期刊文献+

不同分子量的聚氧化乙烯对聚乳酸结晶和力学性能的影响研究 被引量:4

Influence of poly(ethylene oxide)with different molecular weight on crystallization behavior and mechanical property of poly(lactic acid)
下载PDF
导出
摘要 聚乳酸(PLA)和其他可降解高分子材料熔融共混被认为是增韧PLA而不损失其可降解特性的最经济有效的方法。通过熔融共混法制备了PLA与聚氧化乙烯(PEO)的共混物,并采用DSC、XRD、SEM以及万能试验机等方法系统研究了不同分子量以及不同比例PEO对PLA微观结构和力学性能的影响。结果表明:在相同比例条件下,低分子量PEO与PLA的相容性要优于高分子量PEO,且对PLA结晶速率的提高更显著;PEO的加入提高了共混物的断裂伸长率,但伴随着拉伸强度的下降,且随PEO含量的增加,拉伸强度下降越明显。当PEO的分子量超过10万时,对PLA的增韧效果更加显著,且共混物的拉伸强度下降幅度较小。 Melt blending of poly(lactic acid)(PLA)with other biodegradable polymers has been considered to be the effective way to tough PLA without compromising its biodegradability.PLA/poly(ethylene oxide)(PEO)blends were prepared by melt processing.Effect of PEO with different molecular weight on microstructure and mechanical properties of PLA were systematically studied with the combination of differential scanning calorimetry(DSC),X-ray scattering(XRD),scanning electron microscope(SEM)and universal testing machine.The results suggested that the compatibility of low molecular weight PEO with PLA was better than that of high molecular weight PEO at the same composition,and the addition of PEO with low molecular weight can more significantly enhanced the crystallization rate of PLA.The results of mechanical properties showed that the addition of PEO significantly increased the breaking elongation,while the tensile strength decreased.When the molecular weight of PEO was more than 100 KDa,the effect of toughing on PLA was more remarkable,and the tensile strength of blends slightly decreased.
出处 《化工新型材料》 CAS CSCD 北大核心 2015年第12期111-114,共4页 New Chemical Materials
基金 国家自然科学基金(50925313 11179031) 北京市科技新星计划(2011016) 新世纪优秀人才(NCET-12-0601) 北京市教委重点基金(KZ201310012014)
关键词 PLA PEO 共混 结晶 力学性能 poly(lactic acid) poly(ethylene oxide) blend crystallization mechanical property
  • 相关文献

参考文献19

  • 1Auras R, Harte B, Selke S.[J]. Macromolecular Bioscience, 2004,4(9) :835-861.
  • 2李文飞,刘军海.聚乳酸改性的研究进展[J].化工新型材料,2011,39(1):25-27. 被引量:10
  • 3Saeidlou S,Huneault M A,Park C B. [J]. Progress in Polymer Science,2012,37(12) :1657-1677.
  • 4Yokohara T, Yamaguchi M. [J].European Polymer Journal, 2008,44(3) :677-685.
  • 5Wang R,Wang S,Zhang Y, et al. [J]. Polymer Engineering Science,2009,49(1) : 26-33.
  • 6Harada M,Ohya T,Iida K, et al. [J].Journal of Applied Poly- mer Science, 2007,106(3) : 1813-1820.
  • 7Takayama T, Todo M, Tsuji H, et al. [J]. Journal of Materials Science, 2006,41 (19) :6501-6504.
  • 8Takayama T,Todo M. [J]. Journal of Materials Science, 2006, 41(15) :4989-4992.
  • 9Bai H,Xiu H,Gao J,et al.[J]. ACS Appl Mater Interfaces, 2012,4(2) : 897-905.
  • 10Ma P, Spoelstra A B, Schmit P, et al. [J]. European Polymer Journal,2013,49(6) : 1523-1531.

二级参考文献68

  • 1陈达,计剑,沈家骢.功能化聚乳酸微球改性聚乳酸膜片表面及其细胞相容性[J].高分子学报,2004,14(6):826-830. 被引量:7
  • 2Auras R, Harte B, Selke S. Macromol Biosci, 2004,4 : 835 - 864.
  • 3Sodergard A, Stolt M. Prog Polym Sci, 2002,27 : 1123 - 1163.
  • 4Drumright R E, Gruber P R, Henton D E. Adv Mater,2000,12:1841 - 1846.
  • 5Weir N A, Buchanan F J, Orr J F, Farrar D F, Boyd A. Biomaterials, 2004,25 : 3939 - 3949.
  • 6Cohn D, Hotovely-Salomon A. Polymer, 2005,46 : 2068 - 2075.
  • 7Na YH, He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y. Biomacromolecules, 2002,3 : 1179 - 1186.
  • 8Shibata M, Inoue Y, Miyoshi M. Polymer, 2006,47 : 3557 - 3564.
  • 9Jiang L, Wolcott M P, Zhang J W. Biomacromolecules, 2006,7 : 199 - 207.
  • 10Labrecque L V, Kumar R A, Dave V, Gross R A, McCarthy S P. J Appl Polym Sci, 1997,66:1507 - 1513.

共引文献36

同被引文献52

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部