期刊文献+

气体膜分离过程模拟中2种平均推动力模型的准确性验证

Two average models scope divided in gas membrane separation process simulation
原文传递
导出
摘要 在各种气体膜分离模型中,平均推动力模型以其计算简单、易于在商业流程模拟软中使用等优点,普遍应用于气体膜分离过程的工艺设计中。但随着膜分离技术的发展,膜的渗透率增大,分离过程中压力范围变广,需要重新判定平均推动力模型的准确性及适用范围。以计算比较准确的离散模型为标准,对比离散模型、对数平均推动力模型和算术平均推动力模型的计算方程,确定压降为影响平均推动力模型准确性的主要参数。分别用离散模型和平均推动力模型对H_2/N_2、CO_2/N_2、O_2/N_2 3种具有代表性的体系进行模拟计算。并分析在不同膜渗透率、操作压力、浓度条件下2种平均推动力模型准确性。结果表明,算术平均推动力模型在低压降体系中的准确性较好,对数平均推动力模型适用于高压降体系。 Average models are commonly applied in gas membrane separation process simulation, due to their simple calculation, and easy incorporation into commercial process simulation software. With the development of membrane technology, membrane permeability increases and operating pressure range becomes wider. Therefore, the accuracy of average models and applied conditions need to again be determined. The comparison between both of arithmetic model and logarithm model and precise discrete model demonstrates that pressure drop is the main factor which affects the accuracy of average models. The simulation of three typical gas separation systems including H2/N2, CO2/N2, O2/N2 is performed with discrete model and two average models. Moreover, the accuracy of two average models has been investigated at varying conditions, i.e., membrane permeability, operating pressure, and concentration. The simulation results show that the arithmetic average model exhibits a better accuracy in low pressure drop systems, whereas the logarithm average model is more suitable for high pressure drop systems.
出处 《计算机与应用化学》 CAS 2015年第12期1448-1452,共5页 Computers and Applied Chemistry
基金 国家自然科学基金资助项目(21206014,21125628) 中央高校基本科研业务费专项基金(DUT14LAB14) 中国石油化工股份有限公司资助项目(X514001)
关键词 气体膜分离 模型 计算机模拟 准确性范围 gas membrane separation process model computer simulation precise scope
  • 相关文献

参考文献10

  • 1Van S, Zhao S, Wardhaugh L. Innovative use of membrane contactor as condenser for heat recovery in carbon capture. Environmental Science & Technology, 2015, 49(4):2532-2540.
  • 2Khalilpour R, Abbas A, Lai Z. Analysis of hollow fibre membrane systems for multicomponent gas separation. Chemical Engineering Research and Design, 2013, 91(2):332-347.
  • 3Coker D, Freeman B, Fleming G Modeling multi component gas separation using hollow-fiber membrane contactors. AIChE Journal, 1998,44(6):1289-1302.
  • 4Pettersen T, Lien, K M. A new robust design model for gas separating membrane modules, based on analogy with counter-current heat exchangers. Computers & Chemical Engineering, 1994, 18(5):427-439.
  • 5Lock S, Lau K, Shariff A. Effect of recycle ratio on the cost of natural gas processing in countercurrent hollow fiber membrane system. Journal of Industrial and Engineering Chemistry, 2015, 21:542-551.
  • 6Ahmad F, Lau K, Lock S. Hollow fiber membrane model for gas separation: process simulation, experimental validation and module characteristics study. Journal of Industrial and Engineering Chemistry, 2015, 21:1246-1257.
  • 7Nunes S P. Membrane Technology: in the Chemical Industry. John Wiley & Sons, 2006:39-50.
  • 8Li P, Chen H Z, Chung T S. The effects of substrate characteristics and pre-wetting agents on PAN-PDMS composite hollow fiber membranes for CO2/N2 and 02/N2 separation. Journal of Membrane Science, 2013, 434:18-25.
  • 9Pan C. Gas separation by high-flux, asymmetric hollow-fiber membrane. AIChE Journal, 1986,32(12):2020-2027.
  • 10Feng X, Ivory J. Development of hollow fiber membrane systems for nitrogen generation from combustion exhaust gas: part I. Effects of module configurations. Journal of Membrane Science, 2000,176(2):197-207.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部