期刊文献+

单气泡沿过热曲面运动的格子Boltzmann模拟 被引量:2

Lattice Boltzmann simulation on motion of single bubble rising along overheated curved surface
原文传递
导出
摘要 基于一般化的插值补充格子Boltzmann方法和直角坐标系下的复合格子Boltzmann相变模型,构建了贴体坐标系下的复合LBM相变模型。利用Laplace定律及气泡在过热液体中的生长过程对该模型进行验证,所得计算结果与Laplace定律、Mikic解析解吻合良好。采用所构建的模型研究了不同Ja下单气泡沿过热曲面运动的运动特性。结果表明:气泡上升过程经历了沿壁面滑移和脱离壁面两个阶段,且Ja越大气泡生长越快,上升速度变化也越快;曲面导致的气泡形变会使得气泡速度变化产生波动,波动频率和幅度与Ja成正相关;气泡并非一直生长变大,其在脱离壁面后,由于受到周围过冷液体冷凝开始变小;气泡对温度场的扰动程度也与Ja成正相关,同时温度场的剧烈变化也反过来影响气泡的生长。 Based on the generalized form of interpolation-supplemented lattice Boltzmann method and the hybrid phase change LBM model in cartesian coordinate system, a hybrid phase change LBM model in body-fitted coordinate system has been proposed. The model was validated by Laplace's law and bubble growth in superheated liquid. The predicted results were in good agreement with both Laplace's law and Mikic's analytical solution. A single bubble rising along a superheated curved surface under different Jacob numbers was then simulated. The results show that during bubble's rising process, it slides over the curved surface at the beginning, and then it departs from the surface. The bubble growth rate and rising velocity increase with Jacob number, and the curved surface leads to a significant deformation with fluctuations in both horizontal and vertical velocities. The fluctuating frequency and amplitude are proportional to Jacob number. After departing from the surface, the bubble becomes small due to the condensation of surrounding supercooled liquid. The bubble disturbed temperature field strengthens Jacob number, and the drastic changes of temperature field, in turn, affect the growth of bubble.
出处 《热科学与技术》 CAS CSCD 北大核心 2015年第6期436-444,共9页 Journal of Thermal Science and Technology
基金 国家自然科学基金资助项目(51276030 51206017)
关键词 贴体坐标 相交 气泡 过热曲面 运动特性 body-fitted coordinate phase change bubble superheated curved surface
  • 相关文献

参考文献25

  • 1解建飞,钟诚文,张勇,尹大川.基于热格子Boltzmann方法的自然对流数值模拟[J].力学学报,2009,41(5):635-640. 被引量:4
  • 2MONTES F, GALAN M, CERRO R. Mass trans- fer from oscillating bubbles in bioreactors [J]. Chemical Engineering Science, 1999, 54 ( 15 ) : 3127-3136.
  • 3刘春嵘,周显初,呼和敖德.气泡在波浪中运动的实验研究[J].水动力学研究与进展(A辑),1997,12(3):315-321. 被引量:3
  • 4DARMANA D, DEEN N G, KUIPERS JAM. Detailed modeling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model [J]. Chemical Engineering Science, 2005, 60(12) :3383-3404.
  • 5ROTHMAN D H, KELLER J M. Immiscible cel- lular-automaton fluids [J]. Journal of Statistical Physics, 1988, 52(3/4) :1119-1127.
  • 6SHAN X, CHEN H. Lattice Boltzmann model for simulating flows with multiple phases and compo- nents [J]. PhysicalReview:E, 1993, 47(3) : 1815.
  • 7ZHENG H, SHU C, CHEW Y. A lattice Bohz- mann model for multiphase flows with large density ratio [J ]. Journal of Computational Physics, 2006, 218(1) :353-371.
  • 8YANG Z, DINH T N, NOURGALIEV R. Numer- ical investigation of bubble growth and detachment by the lattice-Boltzmann method [J]. International Journal of Heat and Mass Transfer, 2001, 44(1) :195-206.
  • 9HAZI G, MARKUS A. On the bubble departure diameter and release frequency based on numerical simulation results [J]. International Journal ofHeat and Mass Transfer, 2009, 52(5):1472-1480.
  • 10GONG S, CHENG P. A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer i-J]. International Journal of Heat and Mass Transfer, 2012, 55(17):4923-4927.

二级参考文献38

  • 1Hou Shuling, Zou Qisu, Chen Shiyi, et al. Simulation of driven cavity by the lattice Boltzmann method. J Comput Phys, 1995, 118:329-347.
  • 2McNamara G, Alder B. Analysis of the lattice Boltzmann treatment of hydrodynamics. Physica A, 1993, 194:218.
  • 3Alexander F J, Chen S, Sterling JD. Lattice Boltzmann thermohydrodynamics. Phys Rev E, 1993, 47:R2249.
  • 4Pavlo P, Vahala G, Vahala L, et al. Linear-stability anal- ysis of thermo-lattice Boltzmann models. J Comput Phys, 1998, 139:79.
  • 5Bartoloni A, Battista C, Cabasino S, et al. LBE simulation of Rayleigh-Benard convection on the APE100 parallel processor. Int J Mod Phys C, 1993, 4:993.
  • 6Shan X. Simulation of Rayleigh-Benard convection using a lattice Boltzmann method. Phys Rev E, 1997, 55:2780.
  • 7Eggels JGM, Somers JA. Numerical simulation of free convective flow using the lattice-Boltzmann scheme. Int J Heat and Fluid Flow, 1995, 16:357-364.
  • 8Peng Y, Shu C, Chew YT. Simplified thermal lattice Boltzmann model for incompressible thermal flows. Phys Rev E, 2003, 68:026701.
  • 9Niu XD, Shu C, Chew YT. A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows. Computers & Fluids, 2007, 36:273-281.
  • 10Somers JA. Direct simulation of fluid flow with cellular au- tomata and the lattice-Boltzmann equation. Appl Sci Res, 1993, 51:127-133.

共引文献13

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部