期刊文献+

可变限速控制下的城市快速路交通流混沌分析 被引量:2

An Analysis of Traffic Chaos on Urban Expressways under Variable Speed Limits
下载PDF
导出
摘要 可变限速策略是城市快速路交通系统中重要的管理手段,制定合理限速值需要考虑交通流运行特征与车辆速度特征因素。为更好地研究可变限速控制下的车辆行驶速度特征所引起的混沌现象,通过设定交通流中遵循可变限速值行驶车辆的不同比例p这一参数,以北京市三环快速路交通环境为背景,构建多种仿真情景得到速度时空序列,借助C-C法获得不同断面的速度序列时间延迟与嵌入维数,重构时间序列相空间,利用小数据量法获得最大Lyapunov指数即λmax,以判断混沌特征,并在相同流量下进行对比,分析发现,没有实施可变限速策略时,断面速度序列λmax为正;实施可变限速策略时,可变限速标识下游200m位置速度时间序列λmax为正,并且λmax与p存在二次回归关系,当p=76.8%时,速度序列λmax趋于0。以p为关键参数的分析结果可为制定可变限速值以及策略实施提供参考。 Variable Speed Limit(VSL)strategies have been used to manage traffic operation in urban expressway systems.To develop a reasonable speed limit values,the characteristics of traffic flow and speed should be taken into consideration.In this paper,traffic chaos on urban expressways is analyzed due to speed variation resulting from using VSLs.The ratio of vehicles complying with VSL in flow,p,is applied as the key parameter to analyze the speed characteristics.A section of 3rd Ring Expressway in Beijing is simulated using Vissim.The C-C method is used to reconstruct the phase space based on the speed time series data collected from Vissim scenarios.Small Data Set method is used to identify the traffic chaos by calculating the largest Lyapunov exponentsλmax.Traffic operations were compared between the scenarios with and without the implementation of VSLs.Analysis results showed thatλmaxof speed time series is positive without VSL,andλmaxof speed time series is also positive at the location 200 mdownstream of VSL sign and a quadratic regression model is found to fit betweenλmaxand p.The minimum value ofλmaxreached 0when p=76.8%.The results of this paper can be useful to support the decision-making of the speed limits and implementation of the VSL strategies.
作者 谷健 陈淑燕
出处 《交通信息与安全》 2015年第5期9-15,共7页 Journal of Transport Information and Safety
基金 国家自然科学基金项目(批准号:61374195)资助
关键词 交通工程 混沌时间序列 Vissim情景仿真 城市快速路 可变限速 traffic engineering chaos time series Vissim scenario simulation urban expressway variable speed limit
  • 相关文献

参考文献13

  • 1DISBRO J E, FRAME M. Traffic flow theory and chaotic behaviorFM].Washington D.C. : Transporta- tion Research Record, 1989 : 109-115.
  • 2DENDRINOS D S. Traffic-flow dynamics., a search for chaos[J].Chaos, Solitons Fractals, 1994,4 (4) : 605-617.
  • 3ZHANG X Y, JARRETT D F. Stability analysis of the classical car-following model[J]. Transportation Research Part B; Methodological, 1997,31 ( 6 ) 441- 462.
  • 4LIT. Nonlinear dynamics of traffic jams-J].Physica D-Nonlinear Phenomena, 2005,207 ( 1 ) : 41-51.
  • 5SHANG P J, LI X W, KAMAE S. Chaotic analysis of traffic time series[J].Chaos, Solitons & Frac- tals,2005,25(1) :121-128.
  • 6NEAAMUDDIN N, JIANG N, MA J M, et al. Ac- tive traffic management strategies: implications for freeway operations and traffic safety[C. The 90th Annual Meeting of Transportation Research Board, Washington, D. C: Transportation Research Board, 2011.
  • 7HABTEMICHAEL F G, SANTOS L de P. Safety and operational benefits of variable speed limits un- der different traffic conditions and driver compliance levels [J]. Journal of the Transportation Research Board,2013 (2386) :7-15.
  • 8PAPAGEORGIOU M, KOSMATOPOULOS E, PAPAMICHAIL I. Effects of variable speed limits on motorway traffic flow[J]. Journal of the Trans- portation Research Board, 2008 (2047) : 37-48.
  • 9ROSENSTEIN M T, COLLINS J J, de LUCA C J. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D.- Nonlinear Phenomena, 1993,65(1): 117-134.
  • 10KIM H S, EYKHOLT R, SALAS J D. Nonlinear dynamics, delay times, and embedding windows [J]. Physica D Nonlinear Phenomena, 1999, 127 (1) :48-60.

同被引文献19

  • 1耿彦斌,于雷,赵慧.ITS数据质量控制技术及应用研究[J].中国安全科学学报,2005,15(1):82-87. 被引量:22
  • 2陈淑燕,王炜,李文勇.实时交通数据的噪声识别和消噪方法[J].东南大学学报(自然科学版),2006,36(2):322-325. 被引量:20
  • 3庞明宝,贺国光.基于支持向量机的交通流混沌快速识别研究[J].系统工程学报,2007,22(6):593-598. 被引量:12
  • 4储浩,杨晓光,吴志周.动态交通数据的预处理方法及应用[C]//第一届中国智能交通年会论文集.上海:同济大学,2005.
  • 5TURNER S M, ALBERT L, GAJEWSKI B,et al.Archived intelligent transportation system dataquality: preliminary analyses of san antonio transguide data [J]. Transportation Research Record,2000(1719):77-84.
  • 6TURNER S M. Guidelines for developing ITS dataarchiving systems [R]. Report No.21 27-3.Texas:The Texas Department of Transportation in cooper-ation with The U.S. Department of TransportationFederal Highway Administration,2001.
  • 7PARK E S,TURNER S, SPIEGELMAN C H. Em-pirical approaches to outlier detection in ITS data[C]. 82nd Annual Meeting of the Transportation Re-search Board,Washington, D.C. :CDROM, 2003.
  • 8JAIN M, COIFMAN B. Improved speed estimatesfrom freeway traffic detectors [ C], 83rd AnnualMeeting of the Transportation Research Board,Washington, D.C. :TRB, 2004.
  • 9DERAKHSHAN R, ORLOWSKA M E,LI X. RFIDdata management: challenges and opportunities[C].Proceedings of IEEE First International Conferenceon RFID. Los Alamitos,California: IEEE Comput-er Society Press* 2007: 175-182.
  • 10KIM Y, MOON M,YEOM K. A framework forrapid development of RFID applications[J]. Com-putational Science & ITS Applications-Iccsa, 2006(3983): 226-235.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部