期刊文献+

一种改进的非匀质医学图像分割算法

VARIATIONAL LEVEL SET METHOD BASED ON LOCAL AND GLOBAL INFORMATION
下载PDF
导出
摘要 针对CV模型和LGDF模型分别存在不能正确分割灰度不均匀图像和对初始轮廓位置敏感的问题,提出一种改进的非匀质医学图像分割方法.利用全局灰度拟合能量对目标图像进行初步分割,再利用局部灰度信息吸引轮廓向目标边界运动并最终停止在目标边界.这个能量函数嵌入到带有正则项的水平集函数中,避免了水平集函数的重新初始化.实验结果表明,本文方法有效地解决了对初始轮廓位置敏感的问题,并且对弱边界、灰度不均匀和添加噪声的图像能够进行精确地分割. Aiming at the question that CV model and LGDF model are difficult to get the correct segmentation results for the intensity inhomogeneity images and the segmentation results are very sensitive to the initial contours. We propose an improved based on local and global region in a variational level set formulation, which utilized the global intensity fitting energy to initialize the coniour close to the true boundaries by a preliminarily segmentation. Then the local intensity fitting energy is used to attract the contour and stop it at object boundaries. This energy is then incorporated into a variational level set formulation with a level set regularization term that avoids expensive reinitialization of the evolving level set function. Experimental results show that the method is effective for solving the sensitive problem about the position of initial contours, and robusting for segmenting weak boundary images, intensity inhomogeneity images, and noisy images.
出处 《山东师范大学学报(自然科学版)》 CAS 2015年第4期20-26,共7页 Journal of Shandong Normal University(Natural Science)
关键词 CV模型 LGDF模型 灰度不均匀 水平集方法 CV model LGDF model intensity inhomogeneity level set method
  • 相关文献

参考文献14

  • 1Osher S, Sethian J. Fronts propagating with curvature dependent speed : algorithms based on Hamilton - Jacobi formulations [ J 1. Journal of Computational Physics,1988, 79( 1 ) :12 -49.
  • 2Li Chunming,Xu Chenyang,Gui Changfeng, et al. Distance regularized level set evolution and its application to image segmentation[ J]. IEEE Transactions on Image Processing,2010,19(12) : 3243 -3254.
  • 3何传江,李梦,詹毅.用于图像分割的自适应距离保持水平集演化[J].软件学报,2008,19(12):3161-3169. 被引量:57
  • 4Chan T, VESE L. Active contours without edges [ J ]. IEEE transactions on Image Processing,2001, 10 (2) :266 -277.
  • 5Li Chunming, Kao C Y, Gore J C, et al. Implicit active contours driven by local binary fitting energy [ C ]//Computer Vision and Pattern Recognition, 2007. CVPR07. IEEE Conference on. IEEE, 2007:1 -7.
  • 6Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems [ J ]. Communications on Pure and Applied Mathematics,1989, 42(5) :577 -685.
  • 7Vese L, Chan T. A multiphase level set framework for image segmentation using the Mumford and Shah model [ J ]. International Journal of Computer Vision,2002,50 ( 3 ) : 271 - 293.
  • 8Wang Li, Lei He, Li Chunming, et al. Active contours driven by local Gaussian distribution fitting energy [ J ]. Signal Processing, 2009, 89(12) :2435 -2447.
  • 9Li Chunming,Xu Chenyang, Gui Changfeng,et al. Level set evolution without reinitiahzation:a new variational formulation [ C ] //Proe of IEEE Conference on Computer Vision and Pattern Recognition. 2005:430 -436.
  • 10Li Chunming, Kao C Y, Gore J C. Minimization of region - scalable fitting energy for image segmentation [ J 1. Image Processing, IEEE Transactions on,2008,17 (10) : 1940 - 1949.

二级参考文献1

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部