摘要
多标记分类问题在文本分类、图像标注和基因功能组学习等领域都有很好的应用前景.考虑到多标记分类问题中的不确定性和相关性问题,引入了邻域粗糙集模型来构造一种新的框架MLRS.但该方法忽略了邻域中样例与测试样例之间的局部相关性,针对该问题,提出一种新的加权多标记分类算法WMLRS.实验表明,本文提出的方法拥有比其他常用的多标记分类算法更优的分类性能.
Multi -label classification problems have a good application prospect in the areas such as text classification, image annotation and gene functional group learning, etc. Neighborhood rough set model can be introduced to construct a new framework called MLRS by considering the uncertainty and correlation questions in multi -label classification problems. But this algorithm ignored the local correlation between the labels of the test examples and their k - nearest neighbors. To cover this defect, this paper proposed a new algorithm called WMLRS algorithm. Experimental results show that the proposed approach WMLRS works better than other commonly used multi - label algorithms.
出处
《山东师范大学学报(自然科学版)》
CAS
2015年第4期30-33,共4页
Journal of Shandong Normal University(Natural Science)
基金
国家自然科学基金资助项目(61170145)
教育部高等学校博士点专项基金资助项目(20113704110001)
山东省自然科学基金资助项目(ZR2010FM021)
山东省科技攻关计划项目(2013GGX10125).
关键词
多标记分类
邻域粗糙集
不确定性
K近邻
multi - label classification
neighborhood rough sets
uncertainty
KNN