期刊文献+

一种基于邻域粗糙集的多标记加权分类算法

A MULTI- LABEL WEIGHTED CLASSIFICATION ALGORITHM BASED ON NEIGHBORHOOD ROUGH SETS
下载PDF
导出
摘要 多标记分类问题在文本分类、图像标注和基因功能组学习等领域都有很好的应用前景.考虑到多标记分类问题中的不确定性和相关性问题,引入了邻域粗糙集模型来构造一种新的框架MLRS.但该方法忽略了邻域中样例与测试样例之间的局部相关性,针对该问题,提出一种新的加权多标记分类算法WMLRS.实验表明,本文提出的方法拥有比其他常用的多标记分类算法更优的分类性能. Multi -label classification problems have a good application prospect in the areas such as text classification, image annotation and gene functional group learning, etc. Neighborhood rough set model can be introduced to construct a new framework called MLRS by considering the uncertainty and correlation questions in multi -label classification problems. But this algorithm ignored the local correlation between the labels of the test examples and their k - nearest neighbors. To cover this defect, this paper proposed a new algorithm called WMLRS algorithm. Experimental results show that the proposed approach WMLRS works better than other commonly used multi - label algorithms.
作者 马文 计华
出处 《山东师范大学学报(自然科学版)》 CAS 2015年第4期30-33,共4页 Journal of Shandong Normal University(Natural Science)
基金 国家自然科学基金资助项目(61170145) 教育部高等学校博士点专项基金资助项目(20113704110001) 山东省自然科学基金资助项目(ZR2010FM021) 山东省科技攻关计划项目(2013GGX10125).
关键词 多标记分类 邻域粗糙集 不确定性 K近邻 multi - label classification neighborhood rough sets uncertainty KNN
  • 相关文献

参考文献13

  • 1Tsoumakas G, Katakis I, Vlahavas I. Mining Muhi - label Data[ M ]. Data Mining and Knowledge Discovery Handbook. Berlin : Springer, 2010 : 667 - 685.
  • 2Jiang J Y, Tsai S C, Lee S J. FSKNN : Multi - label text categorization based on fuzzy similarity and k nearest neighbors[ J]. Expert Systems with Applications, 2012, 39(3): 2813-2821.
  • 3Trohidis K, Tsoumarkas G, Kallifis G, et al. Multi -label classification of music into emotions [C ]. Proc of International Conference on Music Information Retrieval. Berlin: Springer, 2008:307-515.
  • 4Read J, Holmes G, Frank E. Classifier chains for multi - label classification [ J]. Machine Learning, 2011, 85 (3) : 333 - 359.
  • 5Read J. A pruned problem transformation method for multi - label classification[ C ]. Proceedings of the New Zealand Computer Science Research Student Conference. New Zealand, 2008 : 143 - 150.
  • 6Tsoumakas G, Vlahavas I. Random k - labelsets: An ensemble method for multi - label classification [ C ]. Proc of the 18th European conference on Machine Learning. Berlin, Heidelberg: Springer - Verlag, 2007:406 - 417.
  • 7De Comit6 F, Gilleron R, Tommasi M. Learning multi -label alternating decision trees from texts and data[ J]. In Machine Learning and Data Mining in Pattern Recognition. Heidelberg: Springer Berlin,2003, 54(9) : 35 -49.
  • 8Schapire R, Singer Y. BoosTexter: A boosting -based system for text categorization[J]. Machine Learning, 2000, 39(2) : 135 - 168.
  • 9Elisseeff A, Weston J. A kernel method for multi - labelled classification [ C ]. Advances in Neural Information Processing Systems. 2001 : 681 - 687.
  • 10Boutell M R, Luo J, Shen X, et al. Learning multi -label scene classification[J]. Pattern Recognition, 2004, 37(9) : 1757 -1771.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部