期刊文献+

一些几何不等式的等价关系

Equivalence properties of some geometric inequalities
下载PDF
导出
摘要 Brunn-Minkowski不等式和Minkowski不等式是凸几何中的两个重要而基本的不等式.近期,已有学者得到了这两个不等式的Orlicz版本,从而构建起Orlicz-Brunn-Minkowski理论的框架.本工作证明经典的Brunn-Minkowski不等式、Minkowski不等式、Orlicz-BrunnMinkowski不等式和Orlicz-Minkowski不等式是等价的. Brunn-Minkowski inequality and Minkowski inequality are two important and fundamental inequalities in convex geometric analysis. Recently, some researchers established Orlicz extension of these two inequalities, and constructed a general framework for the Orlicz-Brunn-Minkowski theory. The purpose of this paper is to show equivalence properties of these four inequalities, i.e., classical Brunn-Minkowski inequality, classical Minkowski inequality, Orlicz-Brunn-Minkowski inequality and Orlicz-Minkowski inequality.
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第6期725-731,共7页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(11271244) 浙江省教育厅科研基金资助项目(Y201328555)
关键词 BRUNN-MINKOWSKI不等式 MINKOWSKI不等式 Minkowski和 Orlicz和 均质积分 Brunn-Minkowski inequality Minkowski inequality Minkowski addition Orlicz addition Quermassintegral
  • 相关文献

参考文献13

  • 1虞志刚,袁俊,冷岗松.Lp投影不等式与Lp质心不等式的等价性[J].上海大学学报(自然科学版),2009,15(1):8-10. 被引量:2
  • 2赵长健,冷岗松,李小燕.凸体几何一些经典不等式的等价性[J].数学学报(中文版),2005,48(2):347-354. 被引量:5
  • 3GARDNER R J. Geometric tomography [M]. 2nd ed. New York: Cambridge University Press, 2006.
  • 4SCHNEIDER R. Convex bodies: the BrunmMinkowski theory [M]. Cambridge: Cambridge Uni- versity Press, 1993.
  • 5OSSERMAN R. The isoperimetric inequality [J]. Bull Amer Math Soc, 1978.
  • 6GARDNER R J, HUG D, WEIL W. The Orlicz-Brunn-Minkowski theory: a additions, and inequalities [J]. J Differential Geom, 2014, 97(3): 427-476.
  • 7FIREY W J. p-means of convex bodies [J]. Math Scand, 1962, 10: 17-24.
  • 8LUTWAK E,YANG D, ZHANG G Y. TheBrunn-Minkowski-Fireyinequality for Adv in Appl Math, 2012, 48(2): 407-413. 84(6): 1182-1238. Hall, 1994. BURAGO Y D, ZALGALLER V A. Geometric inequalities [M]. Berlin: Springer-Verlag, 1998.
  • 9BUSEMANN H. Convex surfaces [M]. New York: Interscience Publishers, 1958.
  • 10LEICHTWEI K. Konvexe mengen [M]. Berlin: Springer-Verlag, 1980.

二级参考文献9

  • 1LENG Gangsong, ZHAO Changjian, HE Binwu & LI XiaoyanDepartment of Mathematics, Shanghai University, Shanghai 200436, China,Department of Mathematics, Binzhou Teachers College, Binzhou 256604, China.Inequalities for polars of mixed projection bodies[J].Science China Mathematics,2004,47(2):175-186. 被引量:9
  • 2GARDNER R J. Geometric tomogaphy [ M ]. 2nd ed. Cambridge : Cambridge University Press, 2006 : 1-30.
  • 3LUTWAK E, YANG D, ZHANG G. Lp affine isoperimetrie inequalities [ J ]. J Differential Geom, 2000, 56 : 111 - 132.
  • 4PETTY C M. Isoperimetric problems [C ] // Proc Conf Convexity and Combinatorial Geometry, University of Oklahoma. 1972:26-41.
  • 5LUTWAK E, ZHANG G. Blaschke-Santalo inequalities [J]. J Differential Geom, 1997, 47:1-16.
  • 6CAMPI S, GRONCH! P. The Lp-Busemann-Petty centroid inequality [J]. Adv Math, 2002, 167:128-141.
  • 7LUTWAK E. The Brunn-Minkowski-Firey theory Ⅰ: mixed volumes and the Minkowski problem [ J]. J Differential Geom, 1993, 38 : 131-150.
  • 8LUTWAK E. The Brunn-Minkowski-Firey theory Ⅱ:affine and geominimal surface areas [ J ]. Advances in Math, 1996, 118:244-294.
  • 9LUTWAK E, YANG D, ZHANG G. Lp John ellisods [ J]. Proc London Math Soc, 2005, 90:497-520.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部