期刊文献+

基于特征子集的变压器局部放电小样本类型识别 被引量:10

Partial discharge type recognition of small sample for power transformer based on feature subsets
下载PDF
导出
摘要 针对变压器局部放电有效经验样本缺乏时的小样本类型识别问题,提出了一种基于特征子集的集成概率神经网络分类方法 FS-EPNN。首先从4种变压器实验模型放电数据中提取了基于局部放电相位分布二维谱图的44个统计特征。其次,为了避免如PCA等传统降维方法造成的分类信息丢失,将样本的所有特征进行划分并组合成多个低维特征子集,然后根据相应特征子集下的所有样本分别构造基于PNN的基分类器,最后采取投票表决规则集成各基分类器结果识别样本的放电类型。实验结果表明,在小样本情况下,该方法与BPNN、基于PCA的PNN和单PNN方法相比进一步提高了局部放电类型的识别率。 Partial discharge( PD) type recognition for power transformer involves small sample problem because of lack of effective training instances. In this paper,a novel ensemble probabilistic neural network( PNN) based on feature subsets( a. k. a. FS-EPNN) was proposed for classifying PD types. Firstly,forty-four statistical characteristic parameters were extracted from two-dimension diagram histograms based on the phase resolved partial discharge data of 4transformer experimental models. Secondly,in order to reduce the feature dimensionality of samples,we split the entire feature set and grouped features into a certain number of feature subsets instead of traditional dimension reduction approach such as PCA,which may cause the information loss. Then,an equal number of PNN classifiers were built according to training instances under each feature subset. Finally,the type of PD was determined by simple majority voting. Experimental results show that,the proposed FS-EPNN outperforms BPNN,PNN based on PCA and single PNN in terms of recognition accuracy for PD.
出处 《电测与仪表》 北大核心 2015年第24期40-45,共6页 Electrical Measurement & Instrumentation
基金 中央高校基本科研业务费专项资金资助(13XS30)
关键词 局部放电 模式识别 概率神经网络 统计特征 特征子集 partial discharge type recognition probabilistic neural network statistical parameter feature subset
  • 相关文献

参考文献24

  • 1Kreuger F H. Recognition of discharges[J]. Electra, 1970, 11: 69-91.
  • 2Pompili M. Partial discharge development and detection in dielectric liquids[ J]. Dielectrics and Electrical Insulation, IEEE Transactions on, 2009, 16(6) : 1648-1654.
  • 3Bean W T, Stafford R, Brashares J S. The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models[J]. Ecography, 2012, 35 f 3 ) : 250-258.
  • 4陈莹,张龙媛.非约束环境下基于小样本的人脸特征精确定位[J].模式识别与人工智能,2013,26(6):577-583. 被引量:2
  • 5Yang W, Wu H. Regularized complete linear discriminant analysis [ J]. Neurocomputing, 2014, 137 : 185-191.
  • 6Jain A K, Chandrasekaran B. 39 Dimensionality and sample size con- siderations in pattern recognition practice [ J ]. Handbook of statistics, 1982, 2: 835-855.
  • 7Raudys S J, Jain A K. Small sample size effects in statistical pattern recognition : Recommendations for practitioners [ J ]. IEEE Transac- tions on pattern analysis and machine intelligence, 1991, 13 (3): 252-264.
  • 8温敏敏,宋建成,宋渊,刘媛,杨浩渊,田慕琴.基于局部放电统计特征参量分析的矿用干式变压器绝缘状态评估[J].高电压技术,2014,40(8):2398-2405. 被引量:26
  • 9Beltle M, Muller A, Tenbohlen S. Statistical analysis of online ultra- high-frequency partial-discharge measurement of power transformers [J]. Electrical Insulation Magazine, IEEE, 2012, 28 (6) : 17-22.
  • 10尚海昆,苑津莎,王瑜,靳松.基于统计特征参数与相关向量机的变压器局部放电类型识别[J].电测与仪表,2014,51(5):15-20. 被引量:7

二级参考文献162

共引文献245

同被引文献103

引证文献10

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部