期刊文献+

Hopkinson拉杆的入射波波形整形实验研究 被引量:1

Experimental Investigation on Incident Waveform Shaping on a Spilt Hopkinson Tensile Bar Equipment
原文传递
导出
摘要 目前,分离式Hopkinson杆实验技术已经被广泛用于测试材料在10~2~10~4s^(-1)应变率范围内的动态力学特性。为了抑制入射波的高频振荡,实现恒定应变率加载,本文利用分离式Hopkinson拉杆(SHTB)实验装置,研究了加载金属短杆(2A12T4铝合金)及整形垫片(纸板、PVC软塑料及带磁性胶皮)对入射波波形的影响。实验结果表明,整形垫片降低了入射应力脉冲的高频振荡,获得了比较平滑的入射应力脉冲,延长了上升时间。同时,利用所得的波形整形结果,对2A12T4铝合金进行了拉伸应力波脉冲加载的拉伸和断裂实验测试。 At present,spilt Hopkinson tensile bar(SHTB)technique has been widely employed to study the dynamic mechanical behavior of engineering materials subjected to loading within a range of strain rate 10~2~10~4s^(-1).In order to restrain the high frequency oscillation of incident wave and to realize loading with constant strain rate,the influence of 2A12T4 aluminum alloy short rod and other three wave shapers made of paperboard,PVC soft plastic and magnetic rubber respectively was experimentally studied based on a spilt Hopkinson tensile bar equipment.Experimental results indicate that incident stress pulse high frequency oscillation is restrained by wave shapers,and smooth incident stress pulse is obtained,the rising time is extended.Moreover,using obtained waveform shaping results,tensile and fracture experiments for 2A12T4 aluminum alloy were performed on SHTB experimental apparatus.
出处 《实验力学》 CSCD 北大核心 2015年第6期690-698,共9页 Journal of Experimental Mechanics
基金 国家自然科学基金(11372081)资助
关键词 分离式Hopkinson拉杆(SHTB) 入射波 波形整形 拉伸测试 动态应力强度因子 spilt Hopkinson tensile bar(SHTB) incident wave waveform shaping tensile measurement dynamic stress intensity factor
  • 相关文献

参考文献13

  • 1Davies R M. A critical study of the Hopkinson pressure bar[J]. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1948: 375--457.
  • 2Follansbee P S, Frantz C. Wave propagation in the split Hopkinson pressure bar[J]. Transactions of the ASME, Journal of Engineering Materials and Technology, 1983, 105:61--66.
  • 3Gotham D A. A numerical method for the correction of dispersion in pressure bar signals[J]. Journal of Physics E: Scientific Instrumentation, 1983, 16:477--479.
  • 4Gong J C, Malvern L E, Jenkins D A. Dispersion investigation in the split Hopkinson pressure bar[J]. Journal of Engineering Materials and Technology, 1990, 112 : 309-- 314.
  • 5王从约,夏源明.傅立叶弥散分析在冲击拉伸和冲击压缩试验中的应用[J].爆炸与冲击,1998,18(3):213-219. 被引量:9
  • 6Nemat-Nasser S, Isaacs J B, Starrett J E. Hopkinson techniques for dynamic recovery experiments [J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1991, 435 (1894): 371-391.
  • 7Bragov A M, Lomunov A K. Methodological aspects of studying dynamic material properties using the Kolsky method[J]. International Journal of Impact Engineering, 1995, 16(2):321--330.
  • 8Frew D J, Forrestal M J, Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J].Experimental Mechanics, 2002, 42(1):93--106.
  • 9Frew D J, Forrestal M J, Chen W. Pulse shaping techniques for testing elastic-plastic materials with a split Hopkinson pressure bar[J]. Experimental Mechanics, 2005, 45(2) : 186-- 195.
  • 10Vecchio K S, Jiang F C. Improved pulse shaping to achieve constant strain rate and stress equilibrium in split- Hopkinson pressure bar testing[J]. Metallurgical and Materials Transactions A, 2007, 38(11):2655--2665.

二级参考文献10

共引文献9

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部