期刊文献+

一种基于随机游走的迭代加权子图查询算法 被引量:3

A Random Walk Based Iterative Weighted Algorithm for Sub-Graph Query
下载PDF
导出
摘要 作为经典的NP完全问题之一,子图查询算法近年来在社交网络、生物分子网络等复杂系统分析中引起研究人员的极大关注.结点相似性计算和目标图约简是子图查询算法中提高查询准确率和降低计算复杂性的2种常用手段.针对复杂生物分子网络之间的子图查询问题,提出了一种基于半Markov随机游走的迭代加权子图查询算法.在结点相似性计算中,设计了基于半Markov游走模型的集成结点本身相似性、结构相似性及邻居结点相似性的综合度量方法;同时,在目标图约简过程中,通过迭代递减目标图中低相似性结点,以降低目标图的规模.对多个真实蛋白质网络查询的实验结果表明,算法在精度和时间复杂性方面都有明显提高. Nowadays,technological development in measuring molecular interactions has led to an increasing number of large-scale biological molecular networks.Identifying conserved and stable functional modules from such networks helps not only to disclose the function of inner components,but also to understand their relationships systematically in complex systems.As one of classical NPcomplete problems,the sub-graph query problem is gaining research efforts in analyzing such behaviors from the fields of social networks,biological networks,and so on.Calculating node similarities and reducing the sizes of target graphs are two common means for improving query precisions and reducing computational complexity in the study of sub-graph algorithms.For the problem of querying sub-graphs among complex protein interaction networks,this paper presents a sub-graph query algorithm based on semi-Markov random walk model.A comprehensive similarity measurement based on semi-Markov random walk model is designed to integrate the similarities of nodes,structures and their neighbors.Meanwhile,an iterative procedure is applied to reduce the size of targeted graph by removing nodes in a cluster with lower similarities by calculating the global correspondence score.The experimental results on multiple real protein query networks demonstrate that the proposed algorithm improves its performance in both query precisions and computational complexity.
出处 《计算机研究与发展》 EI CSCD 北大核心 2015年第12期2824-2833,共10页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61170177) 国家"九七三"重点基础研究发展计划基金项目(2013CB32930X)
关键词 半Markov游走模型 迭代加权 蛋白质相互作用 生物分子网络 子图查询 semi-Markov random walk model iterative weighting protein-protein interaction biological molecule network sub-graph query
  • 相关文献

参考文献13

  • 1Tung A K H. Large scale cohesive subgraphs discovery for social network visual analysis [J]. Proceedings of the VLDB Endowment, 2012, 6(2): 85-96.
  • 2Andorf C M, Honavar V. Sen T Z. Predicting the binding patterns of hub proteins: A study using yeast protein interaction networks [J]. PLoS One, 2013, 8(2): Article No e56833.
  • 3Krian M, Nagarajaram H A. Global versus local hubs in human protein protein interaction network [J]. Proteome Research, 2013, 12(12): 5436-5446.
  • 4Glaab E, Baudot A, Krasnogor N, et al. EnrichNet: NetworkLbased gene set enrichment analysis [J]. Bioinformatics, 2012, 28(18): i451-i457.
  • 5Huan Jun, Wang Wei, Prins J. Efficient mining of frequent suhgraphs in the presence of isomorphism[C]//Proc of the 3rd IEEE Int Conf on Data Mining. Los Alamitos, CA: IEEE Computer Society, 2003:549-552.
  • 6Kelley B P, Yuan Bingbing, Lewitter F, et al. PathBLAST: A tool for alignment of protein interaction networks [J]. Nucleic Acids Research, 2004, 32(Web Server issue): W83- W88.
  • 7Shlomi T, Segal D, Ruppin E, et al. QPath: A method for querying pathways in a proteiprotein interaction network[J]. BMC Bioinformatics, 2006(7) : Article No 199.
  • 8Dost B, Shlomi T, Gupta N, et al. QNet: A tool for querying protein interaction networks [J]. Computional Biology, 2008, 15(7): 913-925.
  • 9Yang Q, Sze S H. Path matching and graph matching in biological networks [J]. Computional Biology, 2007, 14(1) : 56-67.
  • 10Singh R, Xu Jinbo, Berger B. Global alignment of multiple protein interaction networks with application to functional orthology detection [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(35) : 12763-12768.

二级参考文献16

  • 1EIMG D, ALBRECHT M. Tissue-Specific proteins and functional implications [J]. Journal of Proteome, 2011, 10: 1893-1903.
  • 2PODDER S, MUKHOPADHYAY P,GHOSH T C,Multifunctionality dominantly determines the rate of human housekeep- ing and tissue specifc interacting protein evolution[ J]. Gene, 2009, 439 : 11-16.
  • 3COLECCHIA F, KOTINVITZ D, WAGNER M, et al. Tissue-specific regulatory network extractor (TS-REX) : a database and software resource for the tissue and cell type-specific investigation of transcription factor-gene networks [ J ]. Nucleic acids research, 2009, 37 ( 11 ) : e82.
  • 4LI W J , HIROYUKI K. A grid layout algorithm for automatic drawing of biochemical Networks [ J ]. Bioinformatics,2005, 21(9) :2036-2042.
  • 5BREITKREUTZ B,STARK C, TYERS M. The GRID: the general repository for interaction datasets [ J ]. Genome Biolo- gy, 2003, 4(3) :23.
  • 6GARCIA O, SAVEANU C. GOlorize: a Cytoscape plug-in for network visualization with Gene Ontology-based layout and coloring [J]. Bioinformatics, 2007, 23(3): 394-396.
  • 7GAJER P , GRIP: Graph Drawing with Intelligent Placement [ J ]. Journal of Graph Algorithms and Applications, 2002, 6(3) : 203-224.
  • 8TAKAYUKI I, MUELDER C, MA K, et al. A Hybrid space-filling and force-directed layout method for visualizing vuhiple- category graphs [ J]. IEEE Pacific Visualization Symposium, 2009, 121-128.
  • 9GAJER P,KOBOUROV S G. GRIP: graph drawing with intelligent placement [ J ]. Graph Algorithms, 2002,6 (3) : 203-224.
  • 10SZKLARCZYK D, FRANCESCHINI A, KUHN M, et al. The STRING database in 2011 : functional interaction networks of proteins, globally ntegrated and scored [ J]. Nucleic Acids Research, 2011, 39, Database issue :561-568.

同被引文献11

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部