期刊文献+

磁性多壁碳纳米管对磺胺类药物的吸附行为 被引量:12

Adsorption of sulfonamides by magnetic multiwall carbon nanotubes
下载PDF
导出
摘要 制备磁性多壁碳纳米管,将MWCNTs羧酸化后再进行加磁,并用于磺胺类药物的吸附行为研究,考察吸附剂用量、溶液pH值、吸附时间和溶液浓度对吸附行为的影响。结果表明,50 mg磁性MWCNTs粉末在50 m L pH值为6,浓度为2 mg/L的磺胺混合标准溶液中吸附30 min,各种磺胺药物的去除率达到85%以上。磁性MWCNTs吸附磺胺类药物的过程符合准二级动力学模型(R2>0.99),平衡吸附容量的试验值与理论计算值更为接近。磁性多壁碳纳米管对磺胺类药物的吸附过程符合Langmuir模型,为可逆吸附。对磁性MWCNTs上吸附的磺胺类药物进行脱附试验,发现5%的氨水甲醇的洗脱效果最好。磁性MWCNTs对磺胺类药物进行10次脱附再吸附反复试验,磺胺类药物的回收率在80%以上,表明磁性MWCNTs对磺胺类药物具有很好的吸附性能,且可以反复使用,磁性MWCNTs具有一定的开发前景和应用价值。 Magnetic multiwall carbon nanotubes(MWCNTs) were prepared by soaking purified MWCNTs in a solution containing ammonium ferrous sulfate and ammonium ferric sulfatewith a pH of 11-12 at 50 ℃ for 30 min,and were used as an adsorbent for sulfonamides.Processing parameters affecting the adsorption efficiency were investigated,including the amount of adsorbent,pH value,adsorption time and the concentration of the sulfonamide solution.The removal of sulfonamides reached 85%when the ratio of the magnetic MWCNTs to the solution was 1 mg/mL,the pH value was 6 and the time of adsorption was 30 min.Adsorption kineticsfollowed apseudo-second order model and the Freundlich equation described the adsorption isotherm well.Desorption tests of the magnetic MWCNTs showed that the best elution was in ammonia-methanol(v/v,5:95).The recovery of sulfonamides was more than 80%after ten desorption and adsorption cycles,indicating that the magnetic MWCNTs can be reused.
出处 《新型炭材料》 SCIE EI CAS CSCD 北大核心 2015年第6期572-578,共7页 New Carbon Materials
基金 科技部国家重大科学仪器设备开发专项(2012YQ09022903) 浙江省本科院校中青年学科带头人学术攀登项目(Pd2013016) 浙江省质量技术监督系统科研项目(20150204) 浙江省科技厅公益性科技项目(215C37019)~~
关键词 磁性多壁碳纳米管 磺胺 吸附 脱附 Magnetic multiw alled carbon nanotubes Sulfonamides Adsorption Desorption
  • 相关文献

参考文献23

  • 1Hou J, Yan J, Zhang F S, et al. Evaluation of intercalated alpha-zirconium phosphate as sorbent in separation and detection of sulfonamides in honey[J]. Food Chemistry, 2014, 150: 58-64.
  • 2Zhou Q, Peng D P, Wang Y L, et al. A novel hapten and monoclonal-based enzyme-linked immunosorbent assay for sulfonamides in edible animal tissues[J]. Food Chemistry, 2014, 154: 52-62.
  • 3Chen Y S, Schwack W. Rapid and selective determination of multi-sulfonamides by high-performance thin layer chromatography coupled to fluorescent densitometry and electrospray ionization mass detection[J]. Journal of Chromatography A, 2014, 1331: 108-116.
  • 4Maria Bueno A, Maria Contento A, Rios A. Determination of sulfonamides in milk samples by HPLC with amperometric detection using a glassy carbon electrode modified with multiwalled carbon nanotubes[J]. Journal of Separation Science, 2014, 37(4): 382-389.
  • 5Zhang Y D, Zheng N, Han R W. Occurrence of tetracyclines, sulfonamides, sulfamethazine and quinolones in pasteurized milk and UHT milk in China's market[J]. Food Control, 2014, 36(1): 238-242.
  • 6Wang M H, Chang H W, Wang S P. Analysis of sulfonamides by liquid chromatography mass spectrometry and capillary electrophoresis combing with voltage-assisted liquid-phase microextraction[J]. Journal of the Chinese Chemical Society, 2013, 60(12): 1479-1483.
  • 7Chen H Y, Zhang Y Q, Gao B, et al. Fast determination of sulfonamides and their acetylated metabolites from environmental water based on magnetic molecularly imprinted polymers[J]. Environmental Science and Pollution Research, 2013, 20(12): 8934-8946.
  • 8Huang Y, Yuan Y L, Zhou Z D, et al. Optimization and evaluation of chelerythrine nanoparticles composed of magnetic multiwalled carbon nanotubes by response surface methodology[J]. Applied Surface Science, 2014, 292: 378-386.
  • 9Pistone A, Lannazzo D, Fazio M. Synthesis and magnetic properties of multiwalled carbon nanotubes decorated with magnetite nanoparicles[J]. Physica B-Condensed Matter, 2014, 434: 88-91.
  • 10Demir A, Baykal A, Sozeri H, et al. Low temperature magnetic investigation of Fe3O4 nanoparticles filled into multiwalled carbon nanotubes[J]. Synthetic Metals, 2014, 187: 75-80.

二级参考文献22

  • 1Mohammad R G,Negar M K,Farnoush F,Sepideh K,Parviz N.J.Hazard.Mater.,2010,173(1-3):415-419.
  • 2Raghunath R,Tripathi R M,Khandekar R N,Nambi K S V.Sci.Total Environ.,1997,207(2-3):133-39.
  • 3Cem E,Muge A,Nilay B,Rian S,Emür H,Adil D.Mater.Sci.Engin.C,2009,29(8):2464-2470.
  • 4Zhu L Y,Zhu Z L,Zhang R H,Hong J,Qiu Y L.J.Environ.Sci.,2011,23(12):1955-1961.
  • 5Dos Santos V C,Tarley C R,Caetano J,Dragunski D C.Water Sci.Technol.,2010,62(2):457-465.
  • 6Araújo C S J,Alves V N,Rezende H C,Almeida I L S,de Assun(c)ā R M N,Tarley C R T,Segatelli M G,Melo Coelho N M.Water Sci.Technol.,2010,62(9):2198-2203.
  • 7Homeira E,Elahe M,Mostafa M A,Omid S.Chem.Eng.J.,2013,215-216:315-321.
  • 8Mariana G S,Vivian S S,Amanda B T P,Inez V P Y,César R T T.React.Funct.Polyrn.,2010,70(6):325-333.
  • 9Liu Y,Eu Z C,Gao J,Dai J D,Han J,Wang Y,Xie J M,Yan Y S.J.Hazard.Mater.,2011,186(1):197-205.
  • 10Luo X B,Luo S L,Zhan Y C,Shu H Y,Huang Y N,Tu X M.J.Hazard.Mater.,2011,192(3):949-955.

共引文献16

同被引文献115

引证文献12

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部