期刊文献+

基于数据场改进的目标分群算法 被引量:3

Improved Algorithm of Target Grouping Based on Data Field
下载PDF
导出
摘要 针对支持向量聚类算法训练样本不稳定问题,引入数据场概念,提出一种基于数据场的支持向量聚类算法,将数域空间构成的数据场中势值较高样本作为训练集获得模型再进行预测聚类。将改进的算法用于态势估计中目标分群问题,仿真结果表明:该算法在样本容量不是很高条件下的准确率较传统算法有所提高,很好地解决了训练样本选择影响聚类效果的问题,但改进后算法耗时较原先有所增加。 Considering the Support Vector Clustering(SVC)algorithm to the problem of unstable training sample,with the concept of data field,an improved algorithm based on data field is proposed(Data Field Support Vector Clustering,DFSVC),the data sample with higher potential value from the data field in composition of the sample space is regarded as the training sample for training the model,and then predict the cluster with the model. The improved algorithm is applied to target grouping of situation assessment. The simulation shows that this algorithm accuracy is higher than the traditional algorithm under the condition of samle size is not very large,it is good to solve the problem of the influence of clustering results with the training sample selection. The time-consuming of improved algorithm is higher than original algorithm.
机构地区 电子工程学院
出处 《火力与指挥控制》 CSCD 北大核心 2015年第12期40-43,共4页 Fire Control & Command Control
基金 国家自然科学基金面上项目(61179036)
关键词 目标分群 支持向量聚类 数据场 势函数 target grouping support vector clustering data field potential function
  • 相关文献

参考文献10

  • 1Hall D L, Llinas J. An Introduction to Muhisensor Data Fu- sion [ J ].Proceedings of the IEEE, 1997,85 ( 1 ) : 77-79.
  • 2王新为,杨绍清,林洪文,常春.海战场目标分群技术研究[J].舰船电子工程,2013,33(11):25-27. 被引量:6
  • 3张明远,王宝树.态势觉察中目标分群技术的实现[J].电光与控制,2004,11(1):40-43. 被引量:21
  • 4Cortes C, Vapnik V. Support-vector Networks [J ].Machine learning, 1995,20(3 ) : 273-297.
  • 5Vapnik V N. The Nature of Statistical Learning Theory [ M ]. New York : Springer-Verlag Inc, 2000.
  • 6Hofmann M. Support Vector Machines Kernels and the Ker- nel Triek[ M ].Technical report Universitat Bamberg, 2006.
  • 7平源.基于支持向量机的聚类及文本分类研究[D].北京:北京邮电大学,2012.
  • 8朱先飞,张钺,陈晓彬,柯峰.能量采集无线Mesh网路由协议研究[J].科学技术与工程,2014,22(9):59-63. 被引量:8
  • 9余剑桥.基干云理论与数据场的空间孤立点挖掘研究[D].重庆:西南农业大学,2010.
  • 10仲茜,李涓子,唐杰,周立柱.基于数据场的大规模本体映射[J].计算机学报,2010,33(6):955-965. 被引量:18

二级参考文献28

  • 1淦文燕,李德毅,王建民.一种基于数据场的层次聚类方法[J].电子学报,2006,34(2):258-262. 被引量:83
  • 2王铮,刘高峰.基于证据理论态势估计中的目标分组方法[J].舰船电子工程,2006,26(2):46-48. 被引量:10
  • 3贺升平,覃征.一种新的机动目标功能合群算法[J].微电子学与计算机,2006,23(6):16-19. 被引量:6
  • 4唐杰,梁邦勇,李涓子,王克宏.语义Web中的本体自动映射[J].计算机学报,2006,29(11):1956-1976. 被引量:98
  • 5孙仲康.多传感器融合技术[M].北京:国防工业出版社,1999..
  • 6Cohen W, Ravikumar P, Fienberg S. A comparison of string distance metrics for name-matching tasks//Proceedings of the IJCAI Workshop on Information Integration on the Web (IIWeb). Aeapulco, Mexico, 2003: 73-78.
  • 7Budanitsky A, Hirst G. Evaluating WordNet based measures of lexical semantic relatedness. Computational Linguistics, 2006, 32(1): 13-47.
  • 8Do H-H, Rahm E. COMA A system for flexible combination of schema matching approaches//Proceedings of the 28th International Conference on Very Large Data Bases(VLDB). Hong Kong, China, 2002:610- 621.
  • 9Melnik S, Garcia-Molina H, Rahm E. Similarity flooding: A versatile graph matching algorithm and its application to schema Matching//Proceedings of the 18th International Conference of Data Engineering (ICDE). San Jose, California, 2002. 117-128.
  • 10Isaac A, Meij L, Schlobach S, Wang S. An empirical study of instance based ontology matching//Proceedings of the 6th International Semantic Web Conference and the 2nd Asian Semantic Web Conference (ISWC/ASWC). Busan, Korea, 2007, 253 -266.

共引文献54

同被引文献27

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部