期刊文献+

植物醛脱氢酶在逆境胁迫中的研究进展 被引量:6

Research Progress on Plant Aldehyde Dehydrogenase Under Adversity Stresses
下载PDF
导出
摘要 干旱、盐和病虫害等逆境胁迫已成为制约植物生长和作物产量的主要因素。植物在生长过程中进化出从形态到生理的一系列机制以缓解胁迫对自身的损害。逆境胁迫下醛类物质的富集会产生一系列的过氧化链式反应,危害细胞膜系统正常生理功能。过量的醛也会与蛋白质和核酸反应,破坏蛋白质和核酸的正常结构和功能,甚至直接导致植物死亡。植物体内醛脱氢酶基因(Aldehyde dehydrogenase,ALDH)在胁迫诱导条件下表达水平增加,大量累积的醛脱氢酶蛋白(ALDHs)将醛物质氧化成相应的羧酸,减少脂类物质的过氧化,参与到植物对生物及非生物的胁迫以及植物的发育调节。从ALDH的分类、功能及作用途径展开详细论述。 Adversity stresses such as drought, salinity and pest etc. have become the main factors restraining plant growth and crop productivity. Plants have evolved a series of mechanisms from morphology to physiology for alleviating stress-causing damages. Accumulated aldehydes may generate peroxidation chain reaction and then damage normal physiological function of cell membrane system. Excessive aldehydes may also react with proteins and nucleic acids and destroy their normal structures and functions, even directly cause the plant death. The expression of the plant aldehyde dehydrogenase gene(ALDH)can be increased by stress induction, and a large number of accumulated aldehyde dehydrogenase proteins(ALDHs)oxidize aldehydes into corresponding carboxylic acids, therefore this reduces the peroxidation of lipid, and involves in stress adaptation on biotic and abiotic environments and plant developmental regulation. This review will summarize the classification, function and pathway of plant ALDHs in detail.
出处 《生物技术通报》 CAS CSCD 北大核心 2015年第12期8-14,共7页 Biotechnology Bulletin
基金 国家大学生创新性实验计划项目(201310755013) 自治区高校科研计划项目(XJEDU2011I02)
关键词 植物醛脱氢酶 逆境胁迫 进展 plant aldehyde dehydrogenase adversity stress research progress
  • 相关文献

参考文献42

  • 1Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures : towards genetic engineering for stress tolerance [J] . P1/mta, 2003, 218 : 1-14.
  • 2Singh S, Brocker C, Koppaka V, et al. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress [ J ] . Free Radical Bio Med, 2013, 56 : 89-101.
  • 3Jacobs AT, Marnett LJ. Systems analysis of protein modification and cellular response induced by electrophile stress [ J ] . Accounts Chem Res, 2010, 43 : 673-683.
  • 4Nadkarni DV, Sayre LM. Structural definition of early lysine and histidine adduction chemistry of 4-hydroxynonenal [ J ] . Chem Res Toxicol, 1995, 8 : 248-291.
  • 5Perozich J, Nicholas H, Wang BC, et al. Relationships within the aldehyde dehydrogenase extended family [ J ] . Protein Sci, 1999, 8: 137-146.
  • 6Jimenez-Lopez JC, Gachomo EW, Seufferheld MJ, et al. The maize ALDH protein superfamily : linking structuralfeatures to functional specificities [ J ] . BMC Struc Bio, 2010, 10 : 43.
  • 7Missihoun TD, Schmitz J, Klug R, et al. Betaine aldehyde dehydrogenase genes from Arabidopsis with different sub-cellular localization affect stress responses [J] . Planta, 2011, 233 : 369- 382.
  • 8Chen XB, Zeng Q, Andrew JW. The stress-responsive Tortula ruralis gene ALDH21A1 describes a novel eukaryotie aldehyde dehydrogenase prorein family [ J ] . Plant Physiol, 2002, 159 ( 7 ) : 677-684.
  • 9Nakazono N, Tsuji H, Li Y, et al. Expression of a gene encoding mitochondrial aldehyde dehydrogenase in rice increases under submerged conditions [ J ] . Plant Physiol, 2000, 124 : 587-598.
  • 10Deusehle K, Funek D, Hellmann H, et al. A nuclear gene encoding mitoehondrial Al-pyrroline-5-earboxylate dehydrogenase and its potential role in protection from proline toxicity [ J ] . Plant J, 2001, 27 ( 4 ) : 345-356.

同被引文献60

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部