期刊文献+

Rstudio和随机丛林在高维全基因组学数据分析中的应用 被引量:2

The Application of Rstudio and Random Jungle in High-dimensional Genomewide Data
下载PDF
导出
摘要 目的结合Rstudio和Random Jungle两款软件的优势,通过远程登录简便、快捷地实现全基因组学数据的分析。方法在服务器端搭建Rstudio Server,封装随机丛林R程序并对英国威康信托病例对照协会(WTCCC)高血压真实数据进行分析,通过Rstudio Sweave动态生成分析结果。结果在客户端即可通过网络浏览器登陆服务器端搭建好的Rstudio Server;数据量较大时,封装后的随机丛林程序在Rstudio Server中运算速度方面相对于R random Forest包优势明显。2001名高血压病例及3004名对照的22条染色体共有490032个SNP位点,根据真实标签通过10次随机丛林过程筛选出稳定排序在前20位的SNPs位点,其Cochron-Armitage检验的P值也有10个排进前11位。结论全基因组学数据的处理会消耗很多的时间和内存,普通计算机根本无法承受,Random Jungle软件的命令行运行方式又不易于数据处理、算法组合或嵌套及结果的再现、可视化,在服务器端搭建Rstudio Server并结合Random Jungle的分析策略可有效地应用于全基因组学数据分析,简化分析过程、提高分析速度和效率、方便实现分析结果的动态输出及再现。 Objective Combining the advantages of Rstudio and Random Jungle software to realize the efficient analysis of genome-wide data via remote login. Methods To set up the Rstudio Server,use the packaged Random Jungle R program to analyze the Wellcome Trust Case Control Consortium hypertension GWAS data and generate the dynamic analysis results. Resuits Client side people can login the Rstudio Server through a web browser; When the amount of data is large, the packaged Random Jungle grogram speed obviously faster than the R randomForest package. 2001 cases of HT affected individuals and 3004 controls of 22 chromosomes with total 490032 SNPs. The top 20 SNPs identified by RJ which use actual label on 10 times that also have 10 in top 11 of Cochron-Armitage test P values. Conclusion Genome-wide data processing will cost a lot of time and memory and it incompetent to afford by ordinary computers completely. Random Jungle Software' s command-line operation mode may not be easy to data processing, algorithm combinations, reproduction of results and visualizations. The provided analysis of the strategy which combines the Rstudio and Random Jungle software can be well applied in GWAS data analysis. This strategy can simplify the analysis process, improving the speed and efficiency of the data analysis. Furthermore, it is convenient to achieve dynamic output and reproduction.
出处 《中国卫生统计》 CSCD 北大核心 2015年第6期955-958,962,共5页 Chinese Journal of Health Statistics
基金 国家自然科学基金(30972537 81172741)
关键词 全基因组关联分析 SNPS Rstudio 随机森林 随机丛林 GWAS SNPs Rstudio Random Forest Random Jungle
  • 相关文献

参考文献12

  • 1Moore JH, Asselbergs FW, Williams SM. Bioinformatics challenges for genome-wide association studies. Bioinformatics, 2010,26 ( 4 ) : 445-455.
  • 2Rstudio. http ://www. rstudio, com/products/rstudio/.
  • 3Rstudio Server. http://www, rstudio, com/products/rstudio/down- load-server/.
  • 4谢益辉.Sweave:打造一个可重复的统计研究流程.http://cod.name/2010/11/reproducible-research-in-statistics/.
  • 5Arm&age P. Tests for linear trends in proportions and frenquencies. Biometrics, 1955,11 ( 3 ) :375-386.
  • 6Breiman L. Random forests. Machine learning ,2001,45 ( 1 ) :5-32.
  • 7武晓岩,李康.基因表达数据判别分析的随机森林方法[J].中国卫生统计,2006,23(6):491-494. 被引量:21
  • 8Schwarz DF, Konig IR, Ziegler A. On safari to Random Jungle : a fast implementation of Random Forests for high-dimensional data. Bioin- formatics ,2010,29 (14) : 1752-1758.
  • 9WellcomeTrust Case Control, Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature,2007,447 (7145) :661-678.
  • 10Purcell S, B Neale, K Todd-Brown, et al. PLINK: a tool set for whole-genomeassociation and population- based linkage analyses. The American Journal of Human Genetics ,2007,81 (3) :559-575.

二级参考文献4

  • 1Marko R.Improving Random Forests.Machine Learning.ECML Proceedings,Springer,Berlin,2004.
  • 2Ramón D,Sara Alvarez DA.Gene selection and classification of microarray data using random Forest.BMC Bioinformatics,2006,http://www.biomedcentral.com/1471-2105/7/3.
  • 3Liaw A,Wiener M.Classification and regression by randomForest.Rnews,2002,2:18-22.
  • 4Leo B.Random Forests.Statistics Department University of California Berkeley,CA 94720,January 2001.

共引文献20

同被引文献38

  • 1李彪,陈润生.复杂疾病关联分析进展[J].中国医学科学院学报,2006,28(2):271-277. 被引量:9
  • 2张学军.复杂疾病的遗传学研究策略[J].安徽医科大学学报,2007,42(3):237-240. 被引量:31
  • 3Park MY, Hastie T. Penalized logistic regression for detecting gene in- teractions[ J]. Biostatistics, 2008, 9(1) :30-50.
  • 4Genkin A, Lewis DD, Madigan D. Large-scale Bayesian logistic regres- sion for text categorization [ J ]. Technometrics, 2007, 49 ( 3 ) : 29l - 304.
  • 5Kim SJ, Koh K, Lustig M, et al. An interior-point method for large- scale 1 1-regularized least squares [ J]. IEEE J-STSP, 2007, 1 (4) : 606-617.
  • 6Zhu J, Hastie T. Classification of gene microarrays by penalized logistic regression [ J]. Biostatisties, 2004, 5(3):427-443.
  • 7Zou H, Hastie T. Regularization and variable selection via the elastic net [J]. J Roy Stat Soc B, 2005, 67(2) :301-320.
  • 8Breiman L. Better subset selection using the non-negative garotte[ J]. Technometrics, 1995,37(4) :373-384.
  • 9Tibshirani R. Regression shrinkage and selection via the lasso [ J]. J Roy StaT Soc B, 1996, 267-288.
  • 10Hoerl AE, Kennard RW. Ridge regression: biased estimation for non- rthogonal problems [ J]. Teehnometrics, 1970, 12(1) :55-67.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部