期刊文献+

利用Tn5转座子介导突变提高大肠杆菌丁醇生产水平 被引量:1

Improvement of butanol production by Escherichia coli via Tn5 transposon mediated mutagenesis
原文传递
导出
摘要 目前,对于构建高产丁醇大肠杆菌工程菌株的工作,主要是对丁醇通路和相关途径的基因进行理性改造。为进一步提升菌株的丁醇生产能力,需要发掘基因组上可影响丁醇生产能力的基因,但这很难通过已有认识或计算机模型进行预测。本工作以一株实验室前期构建的产丁醇大肠杆菌工程菌株为研究对象,利用Tn5转座子构建了一个含有1 196个菌株的突变文库。丙酮酸是丁醇的前体,并且在发酵终产物中,副产物丙酮酸的含量与丁醇的含量呈反相关,因此,可以利用丙酮酸的含量来间接反映丁醇的含量,而丙酮酸可用二硝基苯肼显色法进行快速测定,基于此,建立了96孔板——酶标仪快速筛选方法。利用该方法成功筛选到了比对照菌株丁醇产量提高了29%、49%、56%的3个突变体菌株。利用反向PCR及测序的方法,确定了其转座子插入位置分别为:pyk A、tdk、cad C基因。这些基因可以作为进一步提高菌株丁醇产量的靶点,同时这种利用Tn5转座子筛选基因靶标的策略也为构建其他微生物细胞工厂提供了新思路。 For engineering an efficient butanol-producing Escherichia coli strain, many efforts have been paid on the known genes or pathways based on current knowledge. However, many genes in the genome could also contribute to butanol production in an unexpected way. In this work, we used Tn5 transposon to construct a mutant library including 1 196 strains in a previously engineered butanol-producing E. coli strain. To screen the strains with improved titer of butanol production, we developed a high-throughput method for pyruvate detection based on dinitrophenylhydrazine reaction using 96-well microplate reader, because pyruvate is the precursor of butanol and its concentration is inversely correlated with butanol in the fermentation broth. Using this method, we successfully screened three mutants with increased butanol titer. The insertion sites of Tn5 transposon was in the ORFs of pyk A, tdk, and cad C by inverse PCR and sequencing. These found genes would be efficient targets for further strain improvement. And the genome scanning strategy described here will be helpful for other microbial cell factory construction.
出处 《生物工程学报》 CAS CSCD 北大核心 2015年第12期1711-1719,共9页 Chinese Journal of Biotechnology
基金 国家高技术研究发展计划(863计划)(No.2011AA02A208) 国家自然科学基金(No.31270107)资助~~
关键词 大肠杆菌 丁醇 Tn5转座子 基因组 Escherichia coli butanol Tn5 transposon genome
  • 相关文献

参考文献23

  • 1Green EM. Fermentative production of butanol-the industrial perspective. Curr Opin Biotechnol, 2011, 22(3): 337-343.
  • 2Jones DT, Woods DR. Acetone-butanol fermentation revisited. Microbiol Rev, 1986, 50(4): 484-524.
  • 3Atsumi S, Cann AF, Connor MR, et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng, 2008, 10(6): 305-311.
  • 4Bond-Watts BB, Bellerose RJ, Chang MCY. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol, 2011, 7(4): 222-227.
  • 5Shen CR, Lan El, Dekishima Y, et al. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol, 2011, 77(9): 2905-2915.
  • 6Dellomonaco C, Clomburg JM, Miller EN, et al. Engineered reversal of the 13-oxidation cycle for the synthesis of fuels and chemicals. Nature, 2011, 476(7360): 355-359.
  • 7Xue C, Zhao J, Zhao JB, et al. High-titer n-butanol production by Clostridium acetobutylicum JB200 in fed-batch fermentation with intermittent gas stripping. Biotechnol Bioeng, 2012, 109(11): 2746-2756.
  • 8Wen M, Bond-Watts BB, Chang MCY. Production of advanced biofuels in engineered E. coli. Curr Opin Chem Biol, 2013, 17(3): 472-479.
  • 9Branduardi P, de Ferra F, Longo V, et al. Microbial n-butanol production from Clostridia to non-Clostridial hosts. Eng Life Sci, 2014, 14(1): 16-26.
  • 10Choi YJ, Lee JM, Jang S, et al. Metabolic engineering of microorganisms for the production of higher alcohols, mBio, 2014, 5(5): e01524-14.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部