期刊文献+

水合物导热系数和热扩散率实验研究 被引量:14

Experimental Study on Thermal Conductivities and Diffusivities of Gas Hydrate
下载PDF
导出
摘要 基于HotDisk热常数分析系统的单面测试功能,建立了一套新的天然气水合物热物性测试系统,并实验研究了I型水合物(甲烷)、H型水合物(甲烷和甲基环己烷)的导热系数和H型水合物的热扩散率。结果显示甲烷水合物样品导热系数随温度的变化非常小,平均导热系数约为0.53W/(m·K)。结合文献报道和实验分析发现零孔隙率甲烷水合物的导热系数大约为0.7W/(m·K),水合物样品在压缩过程中虽然减少了孔隙,但是却引起晶体破碎,导致导热系数与理想值差距较大。水合物的导热系数与水合物的类型及客体分子有关,大体顺序为I型〉II型〉H型〉半笼型水合物。甲烷一甲基环己烷生成的H型水合物热扩散率为0.205~0.26mm2/s,和其他类型的水合物相当;水合物的热扩散率大约为水的两倍,而导热系数和水相近。 By improving the Hot Disk thermal constant analysis system, a new thermal properties measurement method of natural gas hydrate was established. The thermal conductivities of structure I hydrate (methane), structure H hydrate (methane-methylcyclohexane) and the thermal diffusivities of structure H hydrate were studied. The results show that the thermal conductivities of methane hydrate sample were very small, and the average thermal conductivity was about 0.53 W/(m.K). By analysis of the experimental data and the literatures, the optimized thermal conductivity of the zero-porosity methane hydrate is about 0.7 W/(m.K). Moreover, the order of magnitude for the thermal conductivity were structure I 〉 structure II 〉 structure H 〉 semi-clathrate hydrate. The thermal conductivity depended on not only the cage type but also the species of the guest molecules. The thermal diffusivity of the hydrate is about twice that of the water, while the thermal conductivity is similar to that of water.
出处 《新能源进展》 2015年第6期464-468,共5页 Advances in New and Renewable Energy
基金 国家自然科学基金项目(41276043 51474197) 国家海洋地质专项项目(GHZ2012006003)
关键词 气体水合物 导热系数 热扩散率 gas hydrate thermal conductivity thermal diffusivity
  • 相关文献

参考文献2

二级参考文献49

  • 1黄犊子,樊栓狮.水的形态与甲烷水合物的生成[J].天然气工业,2004,24(7):29-31. 被引量:14
  • 2孙春岩,牛滨华,文鹏飞,黄永样,王宏语,黄新武,李佳.海上E区天然气水合物地质、地震、地球化学特征综合研究与成藏远景预测[J].地球物理学报,2004,47(6):1076-1085. 被引量:21
  • 3黄犊子,樊栓狮.甲烷水合物在静态体系中生成反应的促进[J].化学通报,2005,68(5):379-384. 被引量:19
  • 4Zakrzewski M, White M A. Thermal conductivities of a clathrate with and without guest molecules. Phys. Rev. (B), 1992, 45(6): 2809~ 2817
  • 5Cha S B, Ouar H, Wildeman T R, et al. A third-surface effect on hydrate formation. J. Phys. Chem., 1988, 92:6492~6494
  • 6Riestenberg D, West O, Lee S, et al. Sediment surface effects on methane hydrate formation and dissociation. Marine Geology, 2003,198:181 ~ 190
  • 7Zhang Y. Methane escape from gas hydrate systems in marine environment, and methane-driven oceanic eruptions. Geophys. Res.Letters, 2003, 30(7): 51-1 ~ 51-4
  • 8Paull C K, Ussler W Ⅲ, Dillon WP. Potentialrole of gas hydrate decomposition in generating submarine slope failures. In: Max M D ed. Natural Gas Hydrate in Oceanic and Permafrost Environments.Norwell, Mass: Kluwer Acad., Norwell, Mass, 2000. 149 ~ 156
  • 9Cathles L M, Chen D F. A compositional kinetic model of hydrate crystallization and dissolution. J. Geophys. Res., 2004, 109,B08102, doi: 10. 1029/2003JB002910
  • 10Kumar P, Turner D, Sloan E D. Thermal diffusivity measurements of porous methane hydrate and hydrate-sediment mixtures. J. Geophys.Res., 2004, 109, B01207, doi: 10.1029/2003JB002763

共引文献25

同被引文献217

引证文献14

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部