期刊文献+

改进型非线性状态估计的制粉系统故障诊断 被引量:9

Coal milling system fault diagnosis based on improved NSET
下载PDF
导出
摘要 为能够快速、准确地对制粉系统故障进行诊断,根据制粉系统的运行特性和故障特征,对基于非线性状态估计的制粉系统故障诊断方法,提出了新的构造过程记忆矩阵的方法,依据马氏距离对故障数据样本进行预处理,并使用预处理后的数据构造过程记忆矩阵,从而有效地减少了冗余数据,提高了诊断效率和诊断的实用性和稳定性。 To diagnose the faults occurred in pulverizing system accurately and rapidly,this paper proposed a novel method for constructing the process memory matrix,against the pulverizing system fault diagnosis method based on nonlinear state estimation,according to the operation characteristics and fault features of the coal milling system.This new method is used to pretreat fault data based on Mahalanobis distance.In addition,it establishes process memory matrix based on the pretreated fault data to reduce redundancy data.By this way,the new method improves the fault diagnosis efficiency and plays a more active role in ensuring practicability and stability of the coal milling system fault diagnosis.
出处 《热力发电》 CAS 北大核心 2015年第12期87-92,97,共7页 Thermal Power Generation
基金 教育部留学回国人员科研启动基金资助项目(改进型非线性状态估计的制粉系统故障诊断)
关键词 制粉系统 故障诊断 非线性 状态估计 马氏距离 过程记忆矩阵 冗余数据 诊断效率 coal milling system fault diagnosis nonlinear state estimation Mahalanobis distance process memory matrix redundant data diagnosis efficiency
  • 相关文献

参考文献13

  • 1潘强,熊波.基于灵敏度预分类的BP神经网络故障诊断方法[J].测试技术学报,2014,28(4):305-310. 被引量:3
  • 2王松岭,刘锦廉,许小刚.基于小波包变换和奇异值分解的风机故障诊断研究[J].热力发电,2013,42(11):101-106. 被引量:13
  • 3闫哲,王明春.基于核主元分析的凝汽器系统故障诊断[J].热力发电,2013,42(4):57-60. 被引量:2
  • 4郭鹏,David Infield,杨锡运.风电机组齿轮箱温度趋势状态监测及分析方法[J].中国电机工程学报,2011,31(32):129-136. 被引量:123
  • 5李顺勇,宋云胜,赵兴旺.一种有效的面向高维数值型数据的聚类方法[J].山西大学学报(自然科学版),2014,37(2):206-209. 被引量:1
  • 6GROSS K C,SINGER R M,WEGERICH S W,et al. Application of a model-based fault detection system to nuclear plant signals[C]//Proceedings of 9th Interna- tional Conference on Intelligent Systems Application to Power-System. Seoul, Korea, 1997.
  • 7BOCKHORST F K, GROSS K C, HERZOG J P, et al. MSET modeling of crystal river-3 venturi flow meters [C]//Proceedings of International Conference on Nu- clear Engineering. San Diego,C A: 1998 : 19-24.
  • 8CHEN S F,PECHT M G. Multivariate state estima- tion technique for remaining useful life prediction of e- lectronic products [C]// Proceedings of AAAI Fall Symposium Artificial Intelligent Prognostics. Arling- ton,V A:2007:26-32.
  • 9CASSIDY K J, GROSS K C, MALEKPOUR A. Ad- vanced pattern recognition for detection of complex software aging phenomena in online transaction pro- cessing servers [C]//Proeeedings of Dependable Sys- tems and Networks. Washington D. C., USA: 2002: 35-40.
  • 10SINGER R M,GROSS K C,HERZOG J P,et al. Mod- el-based nuclear power plant monitoring and fault de- tection:theoretical foundation[C]//Proceedings of 9th International Conference on Intelligent Systems Appli- cation to Power System. Seoul, Korea : 1997 : 61-68.

二级参考文献68

共引文献149

同被引文献153

引证文献9

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部