期刊文献+

基于约束独立成分分析的多组分污染气体混叠峰识别 被引量:1

Identification of Multi-component Pollution Gas Aliasing Peak Based on Constrained Independent Component Analysis
下载PDF
导出
摘要 大气污染监测中测得的红外光谱是混合气体的红外光谱。针对主次吸收峰严重混叠的红外混合气体特征提取和识别问题,提出了一种基于约束独立成分分析的光谱特征提取方法使谱线有效地区分开来。该方法引用峭度作为约束条件,运算时约束向量可使所对应的目标信源具有非高斯性极大的效用,提取出目标信源。并按统计度量的大小来进行排序,减少传统独立成分分析算法分离信号顺序、符号、幅度的不确定性,使得分离出来的独立分量更接近实际信源。应用支持向量机建立定量分析模型检验该算法分离效果。实验结果表明,该方法能够按需要顺序分离出混合气体光谱中的纯物质光谱。 The infrared spectrum measured in air pollution monitoring is mixed gas infrared spectrum. A method based on constrained independent component analysis is proposed to solve the feature extraction and identification where the primary and secondary absorbed peaks are seriously overlapped. The method cited kurtosis as constraints. The constraints vector lead to the correspond target have a non-Gaussian source of great utility during operation. Extracting the target signal source and according to the size of statistical measure to sort. It can reduce the uncertainty of signal sequence,symbol,amplitude separated by traditional independent component analysis. So the separated independent component is closer to the actual source. Then apply support vector machine algorithm quantitative analysis model to examine the separation effect. The experimental result indicates that this method can separate the spectrum of pure substances from mixed gas spectrum in desired order.
出处 《科学技术与工程》 北大核心 2015年第36期63-66,104,共5页 Science Technology and Engineering
基金 国家自然科学基金科学仪器基础研究专款(61127015) 国家国际科技合作专项(2012DFA10680 2013DFR10150) 山西省青年科技研究基金(2013021028-1)资助
关键词 混叠峰识别 红外光谱 约束独立成分分析 峭度 定量分析 aliasing peak identification infrared spectrum constrained independent component analysis kurtosis quantitative analysis
  • 相关文献

参考文献8

二级参考文献35

  • 1肖辉,沈志来,黄美元,吴玉霞.我国西南地区地面和低层大气臭氧的观测分析[J].大气科学,1993,17(5):621-628. 被引量:22
  • 2鲍强.中国城市大气污染概况及其防治对策[J].环境科学进展,1996,4(1):1-18. 被引量:13
  • 3邹小波,赵杰文.用遗传算法快速提取近红外光谱特征区域和特征波长[J].光学学报,2007,27(7):1316-1321. 被引量:44
  • 4Hyvairinen A,Karhunen J,Oja E.Independent component analy- sis[M].[S.l.] : John Wiley&Sons, Inc,2001.
  • 5Comon Elndependent component analysis:a new concept?[J].Sig- nal Processing, 1994,36(3) :287-314.
  • 6Bell A J, Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution[J].Neural Computa- tion, 1995,7(6) : 1129-1159.
  • 7Cardoso J F, Laheld B H.Equivariant adaptive source separation[J]. IEEE Transactions on Signal Processing, 1996,44(12) :3017-3030.
  • 8Park H M,Jeong H Y,Lee T W,et al.Subband-based blind sig- nal separation for noisy speech recognition[J].Electronics Letters, 1999,35(23) :2011-2012.
  • 9Delfosse N, Loubaton EAdaptive blind separation of independent sources: a deflation approach[J].Signal Processing, 1995,45 ( 1 ) : 59-83.
  • 10Hyvarinen A, Oja E.A fast fixed-point algorithm for independent component analysis[J].Neural Computation, 1997,9(7): 1483-1492.

共引文献19

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部