期刊文献+

基于蜜蜂交配优化算法的MIMO-OFDM系统上行多用户检测

Honeybees Mating Optimization Algorithm for Uplink Multi-user Detection in MIMO-OFDM Systems
下载PDF
导出
摘要 针对上行MIMO-OFDM系统多用户检测(multi-user detection,MUD)问题,提出了一种基于蜜蜂交配优化(honeybees mating optimization,HBMO)算法的新方法。该方法通过模拟蜂群的交配过程和蜂王的不断进化来实现全局寻优;同时,该方法为了避免陷入局部最优解,在工蜂哺育阶段,采取邻域搜索。仿真结果表明,该方法在取得较优检测性能的同时,其计算复杂度却远远低于最大似然(maximum likelihood,ML)检测算法。 For the uplink Multi-User Detection( MUD) in MIMO-OFDM systems,a new method based on Honeybees Mating Optimization( HBMO) was proposed. The method can achieve a global optimization by simulating the mating process of bees and the evolution of the queen. At the same time,in order to avoid the algorithm falling into a local optimal solution,a neighborhood search algorithm was adopted during the stage of worker feeding. Simulation results show that the HBMO algorithm can achieve a better detection performance while its computational complexity is much lower than the maximum likelihood( ML) detection algorithm.
出处 《科学技术与工程》 北大核心 2015年第36期169-173,共5页 Science Technology and Engineering
基金 国家科技重大专项(2014ZX03001009-003)资助
关键词 MIMO-OFDM系统 多用户检测 蜜蜂交配优化算法 多址干扰 MIMO-OFDM system multi-user detection honeybees mating optimization multiple access interference
  • 相关文献

参考文献15

  • 1Verdu S. Multiuser detection. Cambridge University Press, 1998.
  • 2Zhu X, Murch R D. Performance analysis of maximum likelihood de- teetion in a MIMO antenna system. IEEE Transactions on Communi- cations, 2002; 50(2): 187-191.
  • 3Siriteanu C, Miyanaga Y, Blostein S D, et al. MIMO zero-forcing de- tection analysis for correlated and estimated rieianfading. IEEE Trans- actions on Vehicular Technology, 2012; 61 (7) : 3087-3099.
  • 4Lu L Y, Xiao Y, Zhang S. MMSE space-time multi-user detection in MIMO-OFDM system. ICSP 2008 9th International Conference on Signal Processing. Beijing: IEEE, 2008 : 1884-1887.
  • 5Liu J S, Tang B H, Wang Y C, et al. A novel multiuser detection al- gorithm for CDMA-based MIMO-OFDM system. The Journal of China Universities of Posts and Telecommunications, 2006 ; 13 (2) : 90-94.
  • 6Studer C, Fateh S, Seethaler D. ASIC implementation of soft-input soft-output MIMO detection using MMSE parallel interference cancel- lation. IEEE Journal of Solid-State Circuits, 2011; 46 (7): 1754-1765.
  • 7俞洋,殷志锋,田亚菲.基于自适应人工鱼群算法的多用户检测器[J].电子与信息学报,2007,29(1):121-124. 被引量:37
  • 8lashid A, Khan F M, Qureshi I M. Genetic algorithm based muitius- er detection in DS-CDMA : a comparative analysis. 2013 International Conference on Machine Learning and Cybernetics ( ICMLC), Tian- jin: IEEE, 2013 ; 2 : 728-734.
  • 9Wu C Q, Zhao D, Gan J P. Signal detection based on particle swarm optimization for MIMO-OFDM system. Telkomnika Indonesian Journal of Electrical Engineering, 2014 ; 12 (5) : 3761-3768.
  • 10Abbass H A. MBO: marriage in honey bees optimization-a haplometrosis polygynous swarming approach. Proceedings of the 2001 Congress on Evolutionary Computation, Seoul : IEEE, 2001 : 207-214.

二级参考文献6

  • 1李晓磊,路飞,田国会,钱积新.组合优化问题的人工鱼群算法应用[J].山东大学学报(工学版),2004,34(5):64-67. 被引量:163
  • 2Verdu S. Minimum probability of error for asynchronous Gaussian multiple-access channels. IEEE Trans. on Inform Theory, 1986, 32(1): 85-96.
  • 3Lu Z S and Yan S.. Multiuser detector based on particle swarm slgorithm. Proceedings of the IEEE 6th Circuits and Systems Symposium on Emerging Technologies: Frontiers of Mobile and Wireless Communication, Shanghai, May 2004,Vol.2: 783-786.
  • 4Zhao Y and Zheng J I. Particle swarm optimization algorithm in signal detection and blind extraction. Proceedings of the 7th International Symposium on Parallel Architectures,Algorithms and Networks, Hong Kong, May 2004: 37-41.
  • 5Ergun C and Hacioglu K. Multiuser detection using a genetic algorithm in CDMA communications systems. IEEE Trans.on Commun., 2000, 48(8): 1374-1383.
  • 6李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38. 被引量:884

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部