期刊文献+

基于线性调频盲卷积的大数据聚类控制方法

Large Data Clustering Control Method Based on Linear Frequency Modulation Bind Convolution
下载PDF
导出
摘要 海量的大数据在大型电力系统中以电压脉冲、电流、用电功率等形式在传输和存储,需要对大型电力系统中的大数据进行优化聚类控制处理,提高大数据的调度和模式控制识别能力。传统方法采用FCM聚类方法,对电力系统的热噪声具有较强的敏感性,导致数据聚类效果不好。提出一种基于线性调频盲卷积的大数据聚类控制方法,构建了大型电力系统中的大数据分布结构模型,对大数据信息流进行线性调频信号拟合,采用线性调频盲卷积方法进行数据融合滤波,优化数据聚类性能。实验结果表明,采用该算法进行大数据聚类,数据聚集度较高,为模式识别和信号检测奠定基础,可提高电力系统中的数据聚类和控制能力。 In the large power network system,the large data in the system is based on voltage pulse,electric current,power and other forms of transmission and storage.It is necessary to optimize the large power system to optimize the clustering control,and improve the large data scheduling and mode control.This paper proposes a large data clustering control method based on linear frequency modulation blind deconvolution.The large data distribution structure model of large power system is constructed.The data stream is fitted by linear frequency modulation signal.The data fusion filtering is performed by using the linear frequency modulation blind convolution method.Experimental results show that the proposed algorithm is based on large data clustering and data aggregation,which lays the foundation for pattern recognition and signal detection.
作者 刘炜
出处 《电力与能源》 2015年第6期822-825,共4页 Power & Energy
关键词 线性调频 盲卷积 电力系统 数据聚类 linear frequency modulation blind convolution power system data clustering
  • 相关文献

参考文献4

二级参考文献69

  • 1HanJ,KamberM.数据挖掘:概念与技术[M].范明,盂小峰,译.2版.北京:机械工业出版社,2007.
  • 2JAIN A,MURTY M,FLYNN P J.Data clustering:a review [J].ACM Computing Surveys,1999,31(3):264-323.
  • 3LEOPOLD E,KINDERMANN J.Text categorization with support vector machines:how to represent texts in input space? [J].Machine Learning,2002,46(1/2/3):423-444.
  • 4PARSONS L,HAQUE E,LIU H.Subspace clustering for high dimensional data:a review [J].ACM Knowledge Discovery and Data Mining Explorations Newsletter,2004,6(1):90-105.
  • 5VERLEYSEN M.Learning high-dimensional data [C]// Proceedings of the Limitations and Future Trends in Neural Computation.Siena:IOS Press,2003:141-162.
  • 6YANG Q,WU X.10 challenging problems in data mining research [J].International Journal of Information Technology and Decision Making,2006,5(4):597-604.
  • 7KRIEGEL H P,KRGER P,ZIMEK A.Clustering high-dimen-sional data:a survey on subspace clustering,pattern-based clustering,and correlation clustering [J].ACM Transactions on Knowledge Discovery from Data,2009,3(1):1-58.
  • 8JING L,NG M K,HUANG J Z.An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data [J].IEEE Transactions on Knowledge and Data Engineering,2007,19(8):1026-1041.
  • 9HUANG J Z,NG M K,RONG H,et al.Automated variable weighting in k-means type clustering [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(5):657-668.
  • 10DOMENICONI C,GUNOPULOS D,MA S,et al.Locally adaptive metrics for clustering high dimensional data [J].Data Mining and Knowledge Discovery,2007,14(1):63-97.

共引文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部