期刊文献+

一种求解三维声腔声压分布问题的无网格法

A MESHLESS METHOD FOR SOLVING THE 3D SOUND PRESSURE DISTRIBUTION PROBLEM
原文传递
导出
摘要 利用传统有限元法求解声压分布问题常常受到污染误差和色散误差的困扰.加权最小二乘无网格法(MWLS)是一种基于移动最小二乘(MLS)近似的无网格方法,求解声腔声压分布问题具有低色散、高精度的特点.然而传统的MLS近似有时容易产生病态矩阵,利用加权正交基函数构建改进的移动最小二乘(IMLS)近似,得到的系统方程为非病态的.论文基于改进的加权最小二乘无网格法(IMWLS)求解三维声腔内部声压分布.计算得到的声压分布和声压频响曲线都与参考值十分吻合,峰值误差和污染误差都比FEM的小,计算成本相比无单元伽辽金法显著降低.计算结果表明IMWLS相比传统的FEM,能在更高的频段内达到高精度,并且相比EFGM能大幅提高计算效率. The traditional FEM suffers from pollution and dispersion problems when it is used to com- pute sound pressure distribution. The meshless weighted least-square (MWLS) method based on the mov- ing least-square (MLS) approximation is characterized with low dispersion and high precision in solving sound pressure distribution problems. However, the MLS approximation may lead to ill-conditioned sys- tem of equations, an accurate solution of which is difficult to obtain. In this study, an improved moving least-square (IMLS) approximation was constructed by using the weighted orthogonal basis function. For- mulas were derived for an improved meshless weighted least-square (IMWLS) method with dispersion a- nalysis in solving three-dimensional (3D) sound pressure distribution problems. The results showed that the calculated sound pressure distribution and the sound pressure frequency response curve agreed very well with the reference values. The errors of peak and pollution of the proposed method were smaller than those of the FEM. The computational cost was significantly reduced compared with the element free Galer- kin method. The results also demonstrated that the proposed method could easily reach higher frequency without losing accuracy.
出处 《固体力学学报》 CAS CSCD 北大核心 2015年第6期530-536,共7页 Chinese Journal of Solid Mechanics
基金 西北工业大学基础研究基金项目(JC20110219)资助
关键词 最小二乘近似 赫尔姆霍兹方程 无网格法 moving least-squares approximation (MLSA), Helmholtz equation,meshless method
  • 相关文献

参考文献15

  • 1Gerdes K, Demkowicz L. Solution of the 3D Helm- holtz equation in arbitrary exterior domains using hp- FEM and IFEM[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 137 .. 239-273.
  • 2Thompson L L, Pinsky P M. A Galerkin least- squares finite element method for the two-dimensional Helmholtz equation[J]. International Journal for Nu- merical Methods in Engineering, 1995, 38 (3) : 371- 397.
  • 3梁以德,戴辉,吴国荣,钟伟芳.声辐射问题的二级分形有限元方法[J].固体力学学报,2003,24(1):89-94. 被引量:1
  • 4Harari I, Grosh K, Hughes T J R eta[.. Recent de- velopments in finite element methods for structural a- coustics[J]. Archives of Computational Methods in Engineering, 1996, 3 : 131-311.
  • 5Babuska I, Sauter S A. Is the pollution effect of the FEM avoidable for the Helmhohz equation consider- ing high wave numbers[J]. SIAM Journal on Numer- ical Analysis, 1997,34 (6):2392 -2423.
  • 6Reprinted in SIAM Review, 2000, 42:451-484. Franca L, Farhat C, Macedo Aet al.. Residual-free bubbles for the Helmhohz equation[J]. International Journal for Numerical Methods in Engineering, 1997, 40:4003-4009.
  • 7Harari I. A survey of finite element methods for time- harmonic acoustics[J]. Comput Methods Appl Mech Eng 2006 ;195:1594-1607.
  • 8Bouillard P, Suleau S. Element-free Galerkin solu- tions for Helmholtz problems: formulation and nu- merical assessment of the pollution effect[J]. Com- puter Methods in Applied Mechanics and Engineer- ing, 1998,162:317-35.
  • 9Suleau S, Bouillard P. Accurate acoustic computa tions using a meshless method[J]. Computer Assis- ted Mechanics and Engineering Sciences, 2001, 8: 445-468.
  • 10Liu W K. Multire solution reproducing kernel particle methods in acoustics[J]. Journal o{ the Acoustical So- ciety of America, 1996, 100(4):2685-2685.

二级参考文献30

  • 1贝新源,岳宗五.三维SPH程序及其在斜高速碰撞问题的应用[J].计算物理,1997,14(2):155-166. 被引量:31
  • 2[1]Jamal Assaad. Jean-noel decarpigny and christian bruneel, Application of the finite element method to two-dimensional radiation problem. J Acoust Soc.Am, 1993, 94(1):562~573
  • 3[2]Louks F Kallivokas, Jacobo Bielak. Time-domain analysis of transient structural acoustics problems based on the finite element method and a novel absorbing boundary element. J Acoust Soc Am, 1993, 94(6):3480~3492
  • 4[3]Manoj K G, Bhattacharyya S K. Transient acoustic radiation from impulsively accelerated bodies by the finite element method. J Acoust Soc Am, 2000, 107(3):1179~1188
  • 5[4]Lonny L Thompson, Peter M Pinsky. A space-time finite element method for the exterior acoustics problem. J Acoust Soc Am, 1996, 99:3297~3311
  • 6[5]Walter Eversman. Mapped infinite wave envelope elements for acoustic radiation in a uniformly moving medium. Journal of Sound and Vibration, 1999, 224(4):665~687
  • 7[6]Seybert A F, Cheng C Y R, Wu T W. The solution of coupled interior/exterior acoustic problems using the boundary element method. J Acoust Soc Am, 1990, 88(3):1612~1618
  • 8[7]Gennaretti M, Giordani A, Morino L. A third-order boundary element method for exterior acoustics with applications to scattering by rigid and elastic shells. Journal of Sound and Vibration, 1999,224(4):699~722
  • 9[8]Shaohal Chen, Liu Yijun. A unified boundary element method for the analysis of sound and shell-like structure interactions. Ⅰ. Formulation and verification. J Acoust Soc Am, 1999, 106(3):1247~1254
  • 10[9]Cremer L, Heck M, Ungar E. Structure-born sound, Berlin: Springer-verlag, 1992

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部