期刊文献+

冷冻组织射频比吸收率规律的研究

Study of Specific Absorption Rate of Radiofrequency in Frozen Tissue
下载PDF
导出
摘要 为了解决冷冻治疗后冰冻区域吸收RF能力显著减少这一难点,该文研究了低温条件下冷冻组织对射频能量吸收(Specific Absorption Rate,SAR)和其电导率的特点。同时采用提高冷冻组织盐离子浓度的方法来增加其对射频吸收的能力。实验结果显示,同一浓度的冰冻生物组织吸收RF的能力和电导率随温度上升而增加,且增速也随之上升。SAR和电导率随盐离子浓度的增加而近似线性增加。研究结果显示,增加冰冻组织盐离子浓度而增加其电导率的方法可以增强冷冻组织对射频的吸收能力。 In order to increase the heating rate of frozen tissue,we studied the rules of Specific Absorption Rate (SAR) of the frozen tissue to RF and rules of electrical conductivity in the frozen tissue and attempted to en- hance them by increase NaC1 concentration. The results have shown that with increasing of the temperature, both the electrical conductivity of frozen tissue and its increasing rate grows with correspondently more SAR of the RF energy and its increasing rate. Also, it is found that NaC1 concentration had a significant influence on the SAR and electrical conductivity of frozen tissue for the 460 KHz RF used. Correspondingly the electrical conductivity is found to increase linearly with salt concentration. It suggests that injection of NaC1 solution to the targeted tissue before the alternated cooling and heating treatment shall be able to shorten the treatment duration by increasing the adsorption ability of the frozen tissue.
出处 《生物医学工程学进展》 CAS 2015年第1期1-5,共5页 Progress in Biomedical Engineering
基金 国家自然基金(NSFC51076095) 上海Med-X重大疾病物理治疗和检测设备工程技术研究中心(11DZ2211000)
关键词 冷热交替治疗 射频 SAR 电导率 alternate cooling and heating, RF, SAR, electrical conductivity
  • 相关文献

参考文献15

  • 1Shen Y, Liu P, Zhang A, et al. Study on tumor microvascu- lature damage induced by alternate cooling and heating[ J]. Annals Bbiomed Eng, 2008, 36 (8): 1409-1419.
  • 2Sun J, Zhang, A, Xu LX. Evaluation of alternate cooling and heating for tumor treatment[ J]. Int J Heat Mass Trans- fer, 2008, 51 (23): 5478-5485.
  • 3Dong J, Liu P, Xu LX. Immunologic response induced by synergistic effect of alternating cooling and heating of breast cancer[J]. Int J Hyperthermia, 2009, 25 (1): 25-33.
  • 4任晓敏,刘苹.新型冷热交替热物理治疗肿瘤的生物学效应研究[J].中国医疗器械杂志,2013,37(3):157-162. 被引量:1
  • 5Hines - Peralta A, Hollander CY, Solazzo S, etc. Hybrid ra- diofrequency and cryoablation device: preliminary results in an animal model [ J]. J Vascular Iintervention Radiol, 2004, 15 (10): 1111-1120.
  • 6Zhao YY, Flugstad B, Kolbe E Park, et al. Using capacitive (radio frequency) dielectric heating in food processing and preservation - A review[ J]. J Food Proc Eng, 2000, 25 - 25.
  • 7Piyasena P, Dussauh C, Koutchma T, et al. Radio frequen- cy heating of foods: principles, applications and related properties- a review[ J]. Critical Review Food Sci Nutrit, 2003, 43 (6) : 587 - 606.
  • 8Merkle EM, Goldberg SN, Boll DT, et al. Effects of Super- paramagnetie Iron Oxide on Radiofrequency -induced Tem- perature Distribution: In Vitro Measurements in Polyaeryl- amide Phantoms and in Vivo Results in a Rabbit Liver Mod- el l[J]. Radiology, 1999, 212 (2): 459-466.
  • 9Goldberg SN, Kruskal JB, Oliver BS, et al. Percutaneous Tumor Ablation: Increased Coagulation by Combining Radio -frequency Ablation and Ethanol Instillation in a Rat Breast Tumor Model 1[ J]. Radiology, 2000, 217 (3): 827 -831.
  • 10Goldberg, S. N., Ahmed, M., Gazelle, G. S., etc. Ra- dio -Frequency Thermal Ablation with NaC1 Solution In- jection: Effect of Electrical Conductivity on Tissue Heating and Coagulation -Phantom and Porcine Liver Study 1 [ J]. Radiology, 2001, 219 (1) : 157 - 165.

二级参考文献31

  • 1Sun J, Zhang A, Xu LX. Evaluation of alternate cooling and heating for tumor treatment[J]. Int J Heat Mass Transfer, 2008, 51: 5478-5485.
  • 2Siegel R, Naishadham D, Jemal A. Cancer statistics for Hispanics/ Latinos[J], CA Cancer J Clin, 2012, 62(5): 283-298.
  • 3Fisher B, Gunduz N, Coyle J, et al. Presence of a growth-stimulating factor in serum following primary tumor removal in mice[J]. Cancer Res, 1989, 49(8): 1996-2001.
  • 4Lage H. An overview of cancer multidrug resistance: a still unsolved problem[J]. Cell Mol Life Sci, 2008, 65(20): 3145-3167.
  • 5Seymour CB, Mothersill C. Radiation induced bystander effects implications for cancer[J]. Nat Rev Cancer 2004; 4(2): 158-164.
  • 6Gordon MS, Mendelson DS, Kato G. Tumor angiogenesis and novel antiangiogenic strategies[J], lnt .1 Cancer, 2009, 126(8): 1777-1787.
  • 7Lunt S J, Chaudary N, Hill RP. The tumor microenvironment and metastatic disease[J]. Clin Exp Metastasis, 2009, 26(1): 19-34.
  • 8Kusmartsev S, Gabrilovich DI. Role of immature myeloid cells in mechanisms of immune evasion in cancer[J]. Cancer lmmunol lmmunother, 2006, 55(3): 237-245.
  • 9Schmid MC, Varner JA. Myeloid cells in the tumor micro- environment: modulation of tumor angiogenesis and tumor inflammation[J]. J oncol, 2010, 2010:201026.
  • 10Murdoch C, Muthana M, Coffelt SB, et al. The role of myeloid cells in the promotion of tumour angiogenesis[J]. Nat Rev Cancer, 2008, 8(8): 618-631.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部