期刊文献+

基于加速度信号和进化RBF神经网络的人体行为识别 被引量:5

Human Activity Recognition Based on Acceleration Signal and Evolutionary RBF Neural Network
下载PDF
导出
摘要 针对基于加速度信号的人体行为识别,采用递阶遗传算法(HGA)训练径向基函数(RBF)神经网络,获得满意的识别正确率.设计适应度函数,利用四分位数间距改进HGA中参数基因的交叉方式,给出自动确定子代生成区域的方法,省去以往同类算法中的经验性设定,并结合算术交叉选择优秀子代,然后对比均匀变异和非均匀变异子代的适应值,实现对RBF网络结构和参数的联合优化.在基于加速度信号的行为识别系统中,与基本HGA和其他常用的训练方法相比,文中算法训练的RBF分类器可获得更低的输出误差和更高的测试样本识别正确率. To obtain a satisfactory recognition rate, a radial basis function (RBF) neural network classifier trained by the hierarchy genetic algorithm (HGA) is utilized to classify human body activities using the acceleration signal. By exploring the interquartile range, a fitness function is proposed to enhance the crossover of the parameter genes in HGA and determine the distance between the offspring and the boundary of coding space automatically. Thus, the empirical setting in the previous algorithms is avoided. With the arithmetic crossover, the offspring with high fitness is chosen. By comparing fitness values between the uniform mutation offspring and the non-uniform mutation offspring, the structure and parameters of RBF network are jointly optimized. The experimental results on actual subject testing data indicate that the radial basis function neural network classifier trained by the proposed method produces smaller errors than those trained by the traditional HGA. A higher recognition rate of testing data is obtained.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2015年第12期1127-1136,共10页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61174021) 江苏省产学研联合创新资金前瞻性联合研究项目(No.BY2014023-31) 江苏高校优势学科建设工程项目 江苏省"六大人才高峰"项目(No.WLW-007)资助
关键词 人体行为识别 加速度信号 递阶遗传算法(HGA) 径向基函数神经网络 Human Activity Recognition, Acceleration Signal, Hierarchy Genetic Algorithm( HGA),Radial Basis Function Neural Network
  • 相关文献

参考文献22

  • 1Aggarwal J K, Xia L. Human Activity Recognition from 3D Data: A Review. Pattern Recognition Letters, 2014, 48: 70-80.
  • 2Siddiqi M H, Ali R, Rana M S, et al. Video-Based Human Activity Recognition Using Multilevel Wavelet Decomposition and Stepwise Linear Discriminant Analysis. Sensors, 2014, 14(4): 6370-6392.
  • 3Wang L M, Qiao Y, Tang X O. Latent Hierarchical Model of Temporal Structure for Complex Activity Classification. IEEE Trans on Image Processing, 2013, 23(2): 810-822.
  • 4Mimura K, Kishino H, Karino G, et al. Potential of a Smartphone as a Stress-Free Sensor of Daily Human Behavior. Behavioural Brain Research, 2015, 276: 181-189.
  • 5Trost S G, Zheng Y L, Wong W K. Machine Learning for Activity Recognition: Hip versus Wrist Data. Physiological Measurement, 2014, 35(11): 2183-2189.
  • 6Ghasemzadeh H, Jafari R. Physical Movement Monitoring Using Body Sensor Networks: A Phonological Approach to Construct Spatial Decision Tress. IEEE Trans on Industrial Informatics, 2010, 7(1): 66-77.
  • 7代琨,于宏毅,李青.一种基于支持向量机的特征选择算法[J].模式识别与人工智能,2014,27(5):463-471. 被引量:6
  • 8Ruch N, Joss F, Jimmy G, et al. Neural Network versus Activity-Specific Prediction Equations for Energy Expenditure Estimation in Children. Journal of Applied Physiology, 2013, 115(9): 1229-1236.
  • 9姚丹霖,陈火旺,殷建平.多链ANN- HMM识别模型及其应用[J].模式识别与人工智能,2000,13(1):1-6. 被引量:2
  • 10Gyorbíró N, Fbin , Hományi G. An Activity Recognition System for Mobile Phones. Mobile Networks and Applications, 2009, 14(1): 82-91.

二级参考文献26

  • 1] Rodgers J L, Nicewander W A. Thirteen Ways to Look at the Corre- lation Coefficient. The American Statistician, 1988,42( 1 ) : 59-66.
  • 2Hua J P, Tembe W D, Dougherty E R. Performance of Feature-Se- lection Methods in the Classification of High-Dimension Data. Pat- tern Recognition, 2009, 42 (3) : 409-424.
  • 3Foithong S, Pinngern O, Attachoo B. Feature Subset Selection Wrapper Based on Mutual Information and Rough Sets. Expert Sys- tems with Applications, 2012, 39( 1 ) : 574-584.
  • 4Uncu0, Ttlrken L B. A Novel Feature Selection Approach: Combi- ning Features Wrappers and Filters. Information Science, 2007, 177(2) : 449-466.
  • 5Szedmak S, Shawe-Taylor J, Saunders C, et al. Multiclass Classifi- cation by lI Norm Support Vector Machine // Proc of the Pattern Recognition and Machine Learning in Computer Vision Workshop. Grenoble, France, 2004 : 1 - 19.
  • 6Vapnik V N. Statistical Learning Theory. New York, USA: Wileylnterscience, 1998.
  • 7Guyon I, Weston J, Bamhill S, et al. Gene Selection for Cancer Classification Using Support Vector Machines. Machine Learning, 2002, 46(1/2/3) : 389-422.
  • 8Duan K B, Rajapakse J C, Wang H Y, et al. Mu|tiple SVM-RFE for Gene Selection in Cancer Classification with Expression Data. IEEE Trans on Nanobioscienee, 2005, 4(3 ) : 228-234.
  • 9Mundra P A, Rajapakse J C. SVM-RFE with MRMR Filter for Gene Selection. IEEE Trans on NanoBioseience, 2010, 9 ( 1 ) : 31-37.
  • 10Li J T, Jia Y M, Li W L. Adaptive Huberized Support Vector Machine and its Application to Microarray Classification. Neural Computing and Applications, 2011, 20( 1 ) : 123-132.

共引文献6

同被引文献45

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部