期刊文献+

棒状尖晶石型LiMn_2O_4材料的合成及其性能研究

Performance of Rodlike Spinel Li Mn_2O_4 Material Preprared with Urchin-like β-MnO_2Precursor
下载PDF
导出
摘要 以MnSO_4·H_2O与NaClO_3为原料,NH_4F为辅助剂,通过水热法合成了海胆状β-MnO_2前驱体,研究了NH_4F用量对前驱体形貌的影响。以形貌最优的β-MnO_2作为前驱体与LiOH·H_2O通过高温烧结合成棒状尖晶石型LiMn_2O_4,并将它与商业MnO_2为前驱体合成的尖晶石型LiMn_2O_4进行了结构和性能比较。通过X射线衍射分析(XRD)、扫描电镜(SEM)以及电化学性能测试等手段对MnO_2前驱体以及尖晶石型LiMn_2O_4产物进行了表征。实验结果表明,棒状LiMn_2O_4具有更优越的电化学性能:0.2C下首次放电比容量为119.8 m Ah/g,最高达到123.2 m Ah/g,30圈循环后,容量保持率为94.07%。 Urchin-like β-MnO_2 was prepared by a hydrothermal method via a redox reaction between NaClO_3 and MnSO_4·H_2O assisted with NH_4F,and the effect of NH_4F dosage on the morphology of β-MnO_2 was studied. Usingβ-MnO_2 with the best morphology as the precursor,rodlike spinel LiMn2O4 was synthesized by sintering of the precursor with LiOH·H_2 O,and its structure and performance were evaluated by comparing with spinel Li Mn2O4 prepared with commercial MnO_2 as the precursor. X-ray diffraction( XRD),scanning electron microscopy( SEM) and electrochemical performance test were used to characterize MnO_2 precursors and LiMn_2O_4 products. The results show that,rodlike LiMn_2O_4 exhibits superior electrochemical properties,with the initial and the highest discharge capacity in 0. 2C reaching119.8 m Ah / g and 123.2 m Ah / g,respectively,and capacity retention ratio remaining to be 94.07% after 30 cycles.
作者 胡婷婷
出处 《矿冶工程》 CAS CSCD 北大核心 2015年第6期145-148,共4页 Mining and Metallurgical Engineering
关键词 锂离子电池 正极材料 尖晶石型LIMN2O4 β-MnO_2 水热法 Li-ion battery cathode material spinel LiMn2O4 β-MnO2 hydrothermal method
  • 相关文献

参考文献19

  • 1Armand M, Taraseon J M. Building better hatteries[ J ]. Nature, 2008,451 (7) :652-657.
  • 2Bruce P G. Energy storage beyond the horizon: Rechargeable lithium batteries[ J]. Solid State Ionics,2008,179(21-26) :752-760.
  • 3Yuan X X, Liu H S, Zhang J J. Lithium-ion Batteries [ M ]. New York : CRC Press,2011.
  • 4Ohzuku T, Brodd R J. An overview of positive-electrode materials tot advanced lithium-ion batteries [ J ]. Journal of Power Sources, 2007, 174(2) :449-456.
  • 5Hu G R, Cao J C, Peng Z D, et al. Enhanced high-voltage properties of LiCoO2 coated with Li [ Li0./ Mn0.6 Ni0.z ] 0z [ J ]. Electrochimica Ac- ta,2014,149:49-55.
  • 6Yang X, Shen L, Wu B, et al. Improvement of the cycling perform- ance of LiCoOz with assistance of cross-linked PAN for lithium ion batteries[ J]. Journal of Alloys and Compounds,2015,639:458-464.
  • 7Porthault H, Le Cras F, Baddour-Hadjean R, et al. One step synthe- sis of lamellar R-3m LiCoO2 thin films by an electrochemical-hydro- thermal method [ J ]. Electrochimica Acta, 2011,56 ( 22 ) : 7580-7585.
  • 8Rao R P, Reddy M V, Adams S, et al. Preparation, temperature de- pendent structural, molecular dynamics simulations studies and elec- trochemical properties of LiFePQ [ J]. Materials Research Bulletin, 2015,66:71-75.
  • 9康飞宇,马俊,李宝华.碳质材料对磷酸铁锂正极材料物理和电化学性能的影响(英文)[J].新型炭材料,2011,26(3):161-170. 被引量:11
  • 10李华成,钟胜奎,李普良,厉冯鹏,王春飞,陈南雄.溶胶-凝胶法制备LiFePO_4/C及其电化学性能[J].矿冶工程,2014,34(1):103-106. 被引量:5

二级参考文献40

  • 1夏熙.二氧化锰的物理、化学性质与其电化学活性的相关(1)[J].电池,2005,35(6):433-436. 被引量:17
  • 2Kang B, Ceder G. Battery materials for ultrafast charging and disaharging [ J]. Nature, 2009, 458: 190-193.
  • 3Park K S, Benayad A, Park M S, et al. Tailoring the electro- chemical properties of composite electrodes by introducing sur- face redox-active oxide film: VOx-impregnated LiFePO4 elec- trode ~J]. Chem Comm, 2010, 46: 2572-2574.
  • 4Chung S Y, Bloking J, Chiang Y M. Electronically conductive phosphor-olivines as lithium storage electrode [J]. Nature Mater, 2001 1: 123-128.
  • 5Jayaprakash N, Kalaiselvi N, Periasamy P. Synthesis and characterization of LiMx Fe1-x PO4 ( M = Cu, Sn, x = 0.02 ) cathode- A study on the effect of cation substitution on LiFePOamaterials [J]. Int J Electrochem Sci, 2008, 3: 476-488.
  • 6Jugovic D, Uskokovic D. A review of recent development in the synthesis procedures of lithium iron phosphate powders [J].J Power Sources, 2009, 190: 538-544.
  • 7Liu A F, Hu Z H, Wen Z B, et al. LiFePO4/C with high capacity synthesized by carbonthermal reduction method[J]. Ionics, 2010, 16: 311-316.
  • 8Liu Y Y, Cao C B. Enhanced elelctrochemical performance of nano-sized LiFePO4/C synthesized by an ultrasonic-assisted co- precipitation method[J].Electrochem Acta, 2010, 55: 4694- 4699.
  • 9Koltypin M, Aurbach D, Nazar L, et al. More on the preparation of LiFePO4 electrodes - The effect of synthesisi route, solution composition, aging and temperature [J]. J Power Sources, 2007, 174 : 1241-1250.
  • 10Huang Y H, Goodenough J B. High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymer [J]. Chem Mater, 2008, 20: 7237-7241.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部