期刊文献+

InGaAs焦平面探测器电串音性能的研究(英文)

Electrical crosstalk in InGaAs focal plane array
下载PDF
导出
摘要 串音与焦平面阵列(FPA)的灵敏度和分辨率密切相关.用模拟的方法定量地计算了In_(0.53) Ga_(0.47)As/InP探测器焦平面阵列的电串音随光波波长、入射方向和台面的刻蚀深度的变化情况.结果显示台面结构的器件的串音抑制性能比平面结构的要好.明显地发现短波长的光串音较小,正照射的串音比背照射要小,这是由材料吸收深度和异质结耗尽层宽度的影响造成的.另外,当台面的刻蚀深度穿透吸收层厚度时,其电串扰几乎完全被抑制.研究结果提出了相应的InGaAs FPA的低串音设计. Crosstalk characteristic is closely correlated to higher sensitivity and higher resolution imaging of focal plane array( FPA). The electrical crosstalk of typical planar and mesa In_(0. 53)Ga_(0. 47)As /InP FPAs as a function of illumination wavelength,incidence,as well as the etching depth in the mesa structures was investigated quantitatively in detail by simulation. It was demonstrated that mesa structures possess better electrical crosstalk characteristics compared with the planar designs. Significantly,the crosstalk is lower for shorter wavelength radiation while the front-side illumination devices show better electrical crosstalk characteristics than do the back-side illuminated devices.It is ascribed to the influence of material absorption depth and the p-i junction depletion width of such structures.It was also found that the electrical crosstalk appears to be greatly suppressed when the etching depth of the mesa structure covers the entire absorption layer of the device. The results suggest design rules for InGaAs FPA with low electrical crosstalk.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2015年第6期641-646,共6页 Journal of Infrared and Millimeter Waves
基金 Supported by 863 Program of China(2011AA010205) National Major Basic Research Project(2011CB925603) Natural Science Foundation of China(91221201,61234005,11074167)
关键词 In0.53Ga0.47As/InP焦平面阵列 电串音 平面结构 台面结构 In0.53Ga0.47As/InP focal plane array electrical crosstalk planar structure mesa structure
  • 相关文献

参考文献10

  • 1黄松垒,张伟,黄张成,许中华,方家熊.大周长面积比延伸波长InGaAs红外焦平面噪声[J].红外与毫米波学报,2012,31(3):235-238. 被引量:4
  • 2朱耀明,李永富,李雪,唐恒敬,邵秀梅,陈郁,邓洪海,魏鹏,张永刚,龚海梅.基于N-on-P结构的背照射延伸波长640×1线列InGaAs探测器[J].红外与毫米波学报,2012,31(1):11-14. 被引量:5
  • 3CTON D, JACK D M, SESSLER T. Large format short-wave infrared (SWIR) focal plane array (FPA) with extremely low noise and high dynamic range [ J ]. Proc. of SPIE, 2009, 7298 : 72983 E - 72983 E - 72913.
  • 4ZHU Yao-Ming, LI Xue, WEI Jun et al. Analysis of cross talk in high density mesa linear InGaAs detector arrays using tiny light dot [ J ]. Proc. of SPIE, 2012, 8419:841911.
  • 5Application note of Goodrich, Crosstalk limits in monolithic InGaAs photodiode arrays, Rev. B, 2006, 1 - 4.
  • 6Musca C A, Dell J M, Faraone L, et al. Analysis of crosstalk in HgCdTe p-on-n heterojunction photovoltaic infrared sensing arrays[ J ]. Journal of Electronic Materials, 1999 : 28.
  • 7Sotoodeh M, Khalid A H, Rezazadeh A A. Empirical low-field mobili- ty model for III-V compounds applicable in device simulation codes [J]. Journal of Applied Physics, 2000, 87:2890.
  • 8Dixon P, Masaun N, Evans M, et al. Monolithic planar InGaAs de- tector arrays for uncooled high-sensitivity SWIR imaging[ J ]. Proc. of SP1E, 2009, 7307:730706 - 730706 - 730712.
  • 9Cohen M J, Olsen G H. Room temperature InGaAs camera for NIR imaging[ J], Infrared Detectors and Instrumentation, 1993, 1946 : 436 - 443.
  • 10Park B J, Jung J, Moon C.-R, et al. Deep trench isolation for crosstalk suppression in active pixel sensors with 1.7 pm pixel pitch [ J ], Japanese Journal of Applied Physics, 2007, 46:2454 -2457.

二级参考文献11

  • 1Malchow Douglas S, Brubaker Robert M, Hansen Marc P. Development of linear array ROIC for InGaAs detector ar- rays with wavelength response to 2.51μm microns for NIR spectroscopy and machine vision[ C]. Proc. ofSPIE,2008, 6940,69402V-1 - 11.
  • 2Porod W, Ferry D K. Modification of the virtual-crystal ap- proximation for ternary Ⅲ- Ⅴ compounds [ J ]. Phys. Rev. B, 1983,27(4) :2587 -2589.
  • 3Vander A R J, Hoogeveen R W M, Spruijt H J, et al. Low- noise InGaAs Infrared ( 1. 0 - 2.4 μm) focal plane arrays for SCIAMACHY [ C ]. Proc. of SPIE, Vol. 2957 : 54 - 65.
  • 4Zhang Yonggang, Gu Yi, et al. Wavelength extended In- GaAs/InA1As/InP photodetectors using n-on-p configura- tion optimized for back illumination[ J ]. Infrared Physics & Technology,2009 (52) :52 - 56.
  • 5Robert F Pierret. Semiconductor Device Fundamentals [ M ]. Publishing House of Electronics Industry,2006,197- 198.
  • 6Howard W. Yoon, etc. Performance comparisons of InGaAs, extended InGaAs, and short-wave HgCdTe detectors be- tween 1 m and 2.5 μm [ C ]. Proc. of SPIE, 2006, Vol. 6297.
  • 7Goetz K-H, Bimberg D, Jurgensen H, et al. Optical and crystallographic properties and impurity incorporation of GaxIn1-xAs (0.44 < x < 0.49) grown by liquid phase epi- taxy[J]. J. Appl. Phys. ,1983,54(8):4543-4552.
  • 8Zielinski E, Schweizer H, Streubel K, et al. Excitonic tran- sitions and exciton damping processes in InGaAs/InP [ J ]. J. Appl. Phys. ,1986,59(6):2196-2204.
  • 9汤定元;糜正瑜.光电器件概论[M]上海:上海科学技术文献出版社,198935-42.
  • 10毕查德;拉扎维;陈贵灿.模拟CMOS集成电路设计[M]西安:西安交通大学出版社,2002172-182.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部