期刊文献+

Distribution algorithm of entangled particles for wireless quantum communication mesh networks

无线量子通信mesh网络的纠缠粒子分发算法(英文)
下载PDF
导出
摘要 With ensured network connectivity in quantum channels, the issue of distributing entangled particles in wireless quantum communication mesh networks can be equivalently regarded as a problem of quantum backbone nodes selection in order to save cost and reduce complexity. A minimum spanning tree( MST)-based quantum distribution algorithm( QDMST) is presented to construct the mesh backbone network. First, the articulation points are found,and for each connected block uncovered by the articulation points, the general centers are solved. Then, both articulation points and general centers are classified as backbone nodes and an M ST is formed. The quantum path between every two neighbor nodes on the MST is calculated. The nodes on these paths are also classified as backbone nodes. Simulation results validate the advantages of QDMST in the average backbone nodes number and average quantum channel distance compared to the existing random selection algorithm under multiple network scenarios. 为了节约成本和降低复杂度,在保证量子信道意义上的网络连通性前提下,无线量子通信mesh网络中的纠缠粒子分发问题可被看作为量子骨干节点的选择问题.提出了一种基于最小生成树的量子分发算法QDM ST,以构建mesh骨干网.算法首先求解连通图的关节点,再求解未被关节点覆盖的各连通块的一般中心,将关节点和一般中心作为骨干网节点,并生成最小生成树,以最短径算法求得最小生成树上任意相邻节点间的量子通路,量子通路上的节点也加入骨干网.对算法进行了分析和仿真,仿真结果表明在不同的网络场景下,QDMST算法的平均骨干网节点数和平均量子信道距离均优于随机选择算法.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期450-456,共7页 东南大学学报(英文版)
基金 Prospective Research Project on Future Networks of Jiangsu Province,China(No.BY2013095-1-18)
关键词 wireless quantum communication networks entangled particles distribution wireless mesh networks minimum spanning tree 无线量子通信网络 纠缠粒子分发 无线mesh网络 最小生成树
  • 相关文献

参考文献2

二级参考文献25

  • 1Shan H G, Cheng H T and Zhuang W H 2011 IEEE Trans, Wireless Comm. 102603.
  • 2Akyildiz I F and Xudong W 2005 IEEE Comm. Mag. 43 s23.
  • 3Bloch M, Rodrigues M R D, McLaughlin S Wand Barros J 2008 IEEE Trans. Inl Theory 54 2515.
  • 4Kannhavong B, Nakayama H, Nemoto Y, Kato Nand Jamalipour A 2007 IEEE Wiresss Comm. 1485.
  • 5Nielsen M A and Chuang I L 2000 Quantum Computation and Quan?tum Information (Cambridge: Cambridge University Press).
  • 6Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145.
  • 7Wootters Wand Zurek W 1982 Nature 299 802.
  • 8Bennett CHand Wiesner S J 1992 Phys. Rev. Lett. 692881.
  • 9Hsieh M H and Wilde M M 2010 IEEE Trans. Inl Theory 56 4705.
  • 10Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部