期刊文献+

A novel similarity measurement approach considering intrinsic user groups in collaborative filtering

一种协同过滤中考虑潜在用户分组的相似度度量方法(英文)
下载PDF
导出
摘要 To improve the similarity measurement between users, a similarity measurement approach incorporating clusters of intrinsic user groups( SMCUG) is proposed considering the social information of users. The approach constructs the taxonomy trees for each categorical attribute of users. Based on the taxonomy trees, the distance between numerical and categorical attributes is computed in a unified framework via a proper weight. Then, using the proposed distance method, the nave k-means cluster method is modified to compute the intrinsic user groups. Finally, the user group information is incorporated to improve the performance of traditional similarity measurement. A series of experiments are performed on a real world dataset, M ovie Lens. Results demonstrate that the proposed approach considerably outperforms the traditional approaches in the prediction accuracy in collaborative filtering. 为了提高用户之间相似度度量的性能,充分利用用户的社会信息,提出一种考虑潜在用户分组信息的相似度度量方法.该方法首先为用户的分类属性建立权值分类树,并基于此分类树,采用统一框架计算用户分类信息和数值信息的距离;然后利用该距离改进k-means聚类方法,以计算用户的潜在用户分组;最后结合用户分组信息改进传统相似度度量方法.基于真实数据集Movie Lens进行实验,并与其他传统方法对比,结果表明,与传统方法相比,所提方法提高了协同过滤中的预测精度.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期462-468,共7页 东南大学学报(英文版)
基金 The National High Technology Research and Development Program of China(863 Program)(No.2013AA013503) the National Natural Science Foundation of China(No.61472080 61370206 61300200) the Consulting Project of Chinese Academy of Engineering(No.2015-XY-04) the Foundation of Collaborative Innovation Center of Novel Software Technology and Industrialization
关键词 SIMILARITY user group CLUSTER collaborative filtering 相似性 用户组 聚类 协同过滤
  • 相关文献

参考文献21

  • 1Resnick P, Iacovou N, Suchak M, et al. GroupLens: an open architecture for collaborative filtering of netnews [C]//Proceedings of the 1994 ACM Conference on Com- puter Supported Cooperative Work. Chapel Hill, NC, USA, 1994:175-186.
  • 2Walter F E, Battiston S, Schweitzer F. A model of a trust-based recommendation system on a social network [J]. Autonomous Agents and Multi-Agent Systems, 2008, 16(1): 57-74.
  • 3Hsu S H, Wen M H, Lin H C, et al. AIMED--a person- alized TV recommendation system[ M]//Interactive TV: a shared experience. Berlin: Springer, 2007: 166- 174.
  • 4Goldberg D, Nichols D, Oki B M, et al. Using collabo- rative filtering to weave an information tapestry[J]. Com- munications of the ACM, 1992, 35(12) : 61 - 70.
  • 5Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[ J]. IEEE Transactions on Knowl- edge and Data Engineering, 2005, 17(6): 734-749.
  • 6Sahoo N, Singh P V, Mukhopadhyay T. A hidden Mark-ov model for collaborative filtering[J/OL]. Management Information Systems Quarterly, 2012. http://ssrn, corn/ abstract -- 1700585.
  • 7Sarwar B, Karypis G, Konstan J, et al. Item-based col- laborative filtering recommendation algorithms [ C]//Pro- ceedings of the lOth International Conference on World Wide Web. Hong Kong, China, 2001 : 285 - 295.
  • 8Ma H, King I, Lyu M R. Effective missing data predic- tion for collaborative filtering [ C ]//Proceedings of the 30th Annual International ACM SIGIR Conference on Re- search and Development in Information Retrieval. Am- sterdam, Holland, 2007: 39-46.
  • 9Kim H K, Kim J K, Ryu Y U. Personalized recommen- dation over a customer network for ubiquitous shopping [ J]. IEEE Transactions on Services Computing, 2009, 2 (2): 140-151.
  • 10Choi K, Suh Y. A new similarity function for selecting neighbors for each target item in collaborative filtering [J]. Knowledge-Based Systems, 2013, 37 (2) : 146 - 153.

二级参考文献29

  • 1Balabanovic M, Shoham Y. Fab: Content-based collaborative recommendation. Comm. ACM, 1997, 40(3): 66-72.
  • 2Lang K. NewsWeeder: Learning to filter netnews. In Proc. the 12th Int. Conf. Machine Learning, Jul. 1995, pp.331-339.
  • 3Mooney R J, Roy L. Content-based book recommending using learning for text categorization. In Proe. ACM SIGIR 1999 Workshop Recommender Systems: Algorithms and Evalua- tion, Aug. 1999, pp.195-204.
  • 4Pazzani M, Billsus D. Learning and revising user profiles: The identification of interesting web sites. Machine Learn- ing, 1997, 27(3): 313-331.
  • 5Xue G R, Dai W Y, Yang Q, Yu Y. Topic-bridged PLSA for cross-domain text classification. In Proc. the 31st Conf. Re- search and Development in Information Retrieval, Jul. 2008, pp.627-634.
  • 6Liu N N, Yang Q. EigenRank: A ranking-oriented approach to collaborative filtering. In Proc. the 31st Conf. Research and Development in Information Retrieval, Jul. 2008, pp.83-90.
  • 7Breese J, Heckerman D, Kadie C. Empirical analysis of predic- tive algorithms for collaborative filtering. In Proc. the 14th Int. Conf. Uncertainty in Artificial Intelligence (UAI1998), May 1998, pp.43-52.
  • 8Liu N N, Zhao M, Yang Q. Probabilistic latent prefer- ence analysis for collaborative filtering. In Proe. the 18th Int. Conf. Information and Knowledge Management (CIKM2009), Nov. 2009, pp.759-766.
  • 9Xin X, King L, Dens H, Lyu M R. A social recommendation framework based on multi-scale continuous conditional ran- dom fields. In Proc. the 18th ACM Conf. Information and Knowledge Management, Nov. 2009, pp.1247-1256.
  • 10Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowledge and Data En- gineering, 2005, 17(6): 734-749.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部