期刊文献+

Enveloping algebras of generalized H-Hom-Lie algebras

广义H-Hom-李代数的包络代数(英文)
下载PDF
导出
摘要 Let H be a Hopf algebra and HYD the Yetter- Drinfeld category over H. First, the enveloping algebra of generalized H-Hom-Lie algebra L, i.e., Hom-Lie algebra L H in the category HYD, is constructed. Secondly, it is obtained that U(L) = T( L)/L where I is the Hom-ideal of T(L) generated by {ll'-l_((-1))·l'l_0-[l,l']|l,l'∈L}, and u: L,T(L)/I is the canonical map. Finally, as the applications of the result, the enveloping algebras of generalized H-Lie algebras, i.e., the Lie algebras in the category MyDn and the Hom-Lie algebras in the category of left H-comodules are presented, respectively. 设H是一个Hopf代数,_H^HYD是H上的Yetter-Drinfeld范畴.首先,构造了广义H-Hom-李代数L,即Hom-李代数L是范畴_H^HYD中对象的包络代数.其次,证明了U(L)=T(L)/I,其中I是由{ll'-l_((-1))·l'l_0-[l,l']|l,l'∈L}生成的T(L)的Hom-理想,u:L→T(L)/I是典范同态.最后,作为应用,分别得到了广义H-李代数,即范畴_H^HYD中的李代数和左H-余模范畴中广义H-Hom-李代数的包络代数.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期588-590,共3页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China(No.11371088) the Excellent Young Talents Fund of Anhui Province(No.2013SQRL092ZD) the Natural Science Foundation of Higher Education Institutions of Anhui Province(No.KJ2015A294) China Postdoctoral Science Foundation(No.2015M571725) the Excellent Young Talents Fund of Chuzhou University(No.2013RC001)
关键词 enveloping algebra generalized H-Hom-Li^algebra Yetter-Drinfeld category 包络代数 广义H-Hom-李代数 Yetter-Drinfeld范畴
  • 相关文献

参考文献12

  • 1Hartwig J T, Larsson D, Silvestrov S D. Deformations of Lie algebras using r-dedvations [ J ]. J Algebra, 2006, 295(2) : 314-361.
  • 2Makhlouf A, Silvestrov S D. Horn-algebra structures [ J ]. J Gen Lie Theory, 2008, 3 (2) : 51 - 64.
  • 3Makhlouf A, Silvestrov S D. Horn-Lie admissible Hom- eoalgebras and Hom-Hopf algebras I C ]//Generalized Lie Theory in Mathematics, Physics and Beyond. Berlin: Springer-Vedag, 2009 : 189 - 206.
  • 4Makhlouf A, Silvestrov S D. Hom-algebras and Hom- coalgebras [ J ]. J Algebra Appl, 2010, 9 (4): 553 - 589.
  • 5Chen Y Y, Wang Z W, Zhang L Y. Quasi-triangular Hom-Lie bialgebras [J]- J Lie Theory, 2012, 22(4): 1075 - 1089.
  • 6Caenepeel S, Goyvaerts I. Monoidal Hom-Hopf algebras [J]. Comm Algebra, 2011,39(6) : 2216-2240.
  • 7Yan D. The Hom-Yang-Baxter equation, Horn-Lie alge- bras, and quasi-wiangular bialgebras [ J ]. J Phys A, 2009, 42(16) : 165202-1 - 165202-12.
  • 8Yau D. Enveloping algebra of Hom-Lie algebras [ J ]. J Gen Lie Theory Appl, 2008, 2(2) : 95 - 108.
  • 9Wang S X, Wang S H. Horn-Lie algebras in Yetter-Drin- feld categories [ J ]. Comm Algebra, 2014, 42 ( 10 ) : 4540 - 4561.
  • 10Sweedler M E. Hopf algebras [ M]. New York: Benja- min, 1969.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部