摘要
Let H be a Hopf algebra and HYD the Yetter- Drinfeld category over H. First, the enveloping algebra of generalized H-Hom-Lie algebra L, i.e., Hom-Lie algebra L H in the category HYD, is constructed. Secondly, it is obtained that U(L) = T( L)/L where I is the Hom-ideal of T(L) generated by {ll'-l_((-1))·l'l_0-[l,l']|l,l'∈L}, and u: L,T(L)/I is the canonical map. Finally, as the applications of the result, the enveloping algebras of generalized H-Lie algebras, i.e., the Lie algebras in the category MyDn and the Hom-Lie algebras in the category of left H-comodules are presented, respectively.
设H是一个Hopf代数,_H^HYD是H上的Yetter-Drinfeld范畴.首先,构造了广义H-Hom-李代数L,即Hom-李代数L是范畴_H^HYD中对象的包络代数.其次,证明了U(L)=T(L)/I,其中I是由{ll'-l_((-1))·l'l_0-[l,l']|l,l'∈L}生成的T(L)的Hom-理想,u:L→T(L)/I是典范同态.最后,作为应用,分别得到了广义H-李代数,即范畴_H^HYD中的李代数和左H-余模范畴中广义H-Hom-李代数的包络代数.
基金
The National Natural Science Foundation of China(No.11371088)
the Excellent Young Talents Fund of Anhui Province(No.2013SQRL092ZD)
the Natural Science Foundation of Higher Education Institutions of Anhui Province(No.KJ2015A294)
China Postdoctoral Science Foundation(No.2015M571725)
the Excellent Young Talents Fund of Chuzhou University(No.2013RC001)