期刊文献+

基于QSPR方法的烃类物质苯胺点预测 被引量:5

Forecasting the aniline points of the hydrocarbons based on the analysis of the quantitative structure-property relationship
下载PDF
导出
摘要 烃类物质在石油工业中有着非常广泛的应用。在石油工业中常用苯胺点来衡量有机溶剂的溶解性能。基于定量结构-性质相关性(QSPR)原理,根据分子结构计算反映分子结构信息的结构参数,应用遗传函数算法从大量结构参数中优化筛选出与烃类物质苯胺点最为密切相关的结构参数作为表征相应化合物结构特征的分子描述符,采用多元线性回归方法对分子描述符与苯胺点之间的定量函数关系进行关联,建立了预测烃类物质苯胺点的理论模型。最后,对模型进行了内部及外部验证来检验模型的可靠性。在此基础上,对所建立的预测模型进行机理解释,分析了影响烃类物质苯胺点的主要结构因素及其影响规律。研究表明,所建模型具有较高的稳定性和预测能力。 The paper is intended to make a prediction study of the aniline points of the hydrocarbons based on the analysis of the quantitative structure-property relationship based on the working principle of the quantitative structure-property relationship(QSPR).As is known,it is possible to calculate the structures of the polymers of organic chemicals and reflect the characteristic features of such molecules according to the molecular structures.And,then,the genetic algorithm has been used to screen out the most appropriate molecular descriptions closely related to the aniline points of hydrocarbons.At this stage,we have chosen the multivariate linear regression method(MLR) to imitate the likely functional relationship between the selected descriptors and the aniline points.In so doing,we have obtained a theoretical model for forecasting the aniline points of hydrocarbons.To make the model as much reliable as possible,we have carefully examined and improved on the internal and external validity so as to guarantee its reliability.Specifically speaking,by the so-called "leave one out" cross validation coefficient of the prediction model we have developed for predicting the hydrocarbons is over 0.5with the multiple correlation coefficient being over 0.6,which is expected to meet the demands of successful QSPR models.What is more,we have identified the mechanism of the developed model and clarified the main factors affecting the aniline point and the changing regularities.The result of our investigation and simulation show that the main structure features affecting the aniline points of hydrocarbons can be started as follows:the molecular steric effects,including the molecular shape and degree of difference in the molecular elements and their molecular electrostatic features,so that they can have favorable impacts on the aniline points of the above-said hydrocarbons.At the same time,we have also made such aniline points of the hydrocarbons decrease with increase of the difference in molecular constituent parts.That is to say,the more complex the molecular shapes are,the higher the aniline points of hydrocarbons will be.And,in turn,the aniline points of hydrocarbons tends to increase with increase of the atomic polarizabilities of the polymers.On the other hand,the effects of the molecular atomic electronegativities on the aniline points of hydrocarbons turn to be lower than before.To be sure,they help to enhance the predictive power of the model though they do not play the major role in the structure-property relationship of the model.Thus,it can be concluded that the model has been made robust and more powerful in its prediction or forecasting power.
作者 张尹炎 潘勇
出处 《安全与环境学报》 CAS CSCD 北大核心 2015年第6期126-131,共6页 Journal of Safety and Environment
基金 国家自然科学基金项目(21006045) 江苏省高校自然科学基金重大项目(12KJA620001)
关键词 安全工程 烃类物质 苯胺点 分子结构 定量结构-性质相关性(QSPR) 预测 safety engineering hydrocarbon aniline point molecular structure quantitative structure-property relationship(QSPR) prediction
  • 相关文献

参考文献29

  • 1GB/T 262-1988 Petroleum products-Determination of aniline point (石油产品苯胺点测定法)[S].
  • 2刘国柱,沈慧明,曲海杰,张香文,米镇涛.喷气燃料的化学组成与理化性质的定量关系研究[J].燃料化学学报,2007,35(6):737-742. 被引量:11
  • 3张艳梅,王从岗,寿德清,万重英,王维刚.胜利等国产原油>350℃重馏分油物性预测方法的研究[J].石油炼制与化工,1996,27(12):58-63. 被引量:2
  • 4李瑞丽,王从岗,向正为,寿德清.石油重馏分油临界性质预测方法的研究[J].石油炼制与化工,1995,26(9):58-63. 被引量:4
  • 5QUINTERO F A, PATEL S J, MUNOZ F, et al. Review of existing QSAR/QSPR models developed for properties used in hazardous chemicals classification system[J]. Industrial & Engineering Chemistry Research, 2012, 51: 16101-16115.
  • 6KATRITZKY A R, FARA D C. How chemical structure determines physical, chemical, and technological properties: an overview illustrating the potential of quantitative structure-property relationships for fuels science[J]. Energy Fuels, 2005, 19: 922-935.
  • 7KATRITZKY A R, LOBANOV V S, KARELSON M. QSPR: the correlation and quantitative prediction of chemical and physical properties from structure[J]. Chemical Society Reviews, 1995, 24(4): 279-287.
  • 8WANG Liansheng(王连生), HAN Shuokui(韩朔睽). Molecular structrues, properties and activities (分子结构、性质与活性)[M]. Beijing: Chemical Industry Press, 1997.
  • 9秦正龙.含苯环有机污染物定量结构与活性相关性研究[J].安全与环境学报,2004,4(2):13-16. 被引量:3
  • 10GHARAGHEIZI F, MIRKHANI S A, ILANI-KASHKOULI P, et al. Determination of the normal boiling point of chemical compounds using a quantitative structure-property relationship strategy: application to a very large dataset[J]. Fluid Phase Equilibria, 2013, 354(36): 250-258.

二级参考文献76

  • 1易忠胜,刘树深.有机化合物水生毒性作用模式的支持向量机分类研究[J].广西科学,2006,13(1):31-34. 被引量:1
  • 2韩香云,郑清.有机磷农药对海洋扁藻毒性构效关系的密度泛涵理论研究[J].安全与环境学报,2007,7(2):21-23. 被引量:7
  • 3KATRITZKY A R, LOBANOV V S, KARELSON M. QSPR: The correlation and quantitative prediction of chemical and physical properties from structure [J]. Chem Soc Rev, 1995, 24(4): 279-287.
  • 4SUZUKI T. Quantitative structure-property relationships for auto-ignition temperatures of organic compounds[J]. Fire Mater, 1994, 18(2): 81-88.
  • 5TETTEH J, METCALFE E, HOWELLS S. Optimization of radial basis and backpropagation neural networks for modeling auto-ignition temperature by quantitative structure-property relationships [ J ]. Chemom Intell Lab Syst, 1996, 32(2): 177-191.
  • 6MITCHELL B E, JURS P C. Prediction of autoignition temperatures of organic compounds from molecular structure[J]. J Chem Inf Comput Sci, 1997, 37 (3): 538-547.
  • 7ALBAHRI T A. Flammability characteristics of pure hydrocarbons[J], Chem Eng Sci, 2003, 58(16) : 3629- 3641.
  • 8ALBAHRI T A, GEORGE R S. network investigation of the Artificial neural structural group contribution method for predicting pure components auto ignition temperature[J]. Ind Eng Chem Res, 2003, 42 (22) : 5708-5714.
  • 9VAPNIK V N. The Nature of Statistical Learning Theory[M]. New York: Springer, 1995.
  • 10LIND P, MALTSEVA T. Support vector machines for the estimation of aqueous solubility [J]. J Chem Inf Comput Sci, 2003, 43(6): 1855-1859.

共引文献57

同被引文献24

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部