期刊文献+

EKF神经网络算法在疏浚作业建模中的应用 被引量:1

Application of EKF Neural Network Algorithm in a Dredging Dynamic Model
下载PDF
导出
摘要 提出了基于EKF神经网络的疏浚作业过程动态演化建模方法。在神经网络建模过程中引入卡尔曼滤波思想,利用扩展卡尔曼滤波实时更新神经网络模型的权重,从而获得能有效跟踪挖泥船疏浚过程工况变化的模型。 This paper presents a areaglng dy- namic evolution modeling method based on an ex- tended Kalman filter neural network algorithm. The concept of the Kalman filter is introduced in the process of neural network modeling. Using the extended Kalman filter real - time updating weights of the neural network model, effective models showing the variation of dredger dredging process conditions can be tracked.
出处 《机械与电子》 2015年第6期23-25,29,共4页 Machinery & Electronics
基金 中央高校基本科研业务费专项资金资助(2014B10122)
关键词 疏浚作业 扩展卡尔曼神经网络 能耗与产量 模型 dredging extended Kalman filterneural network energy consumption and produc-tion model
  • 相关文献

参考文献7

二级参考文献14

  • 1张友民,戴冠中,张洪才,卢京潮.一种前馈神经网络的卡尔曼滤波学习方法[J].信息与控制,1994,23(2):113-118. 被引量:17
  • 2陈福贵,李远富.基于BP神经网络的铁路货运量预测[J].铁道货运,2005,23(9):15-17. 被引量:11
  • 3覃祖旭,张洪钺.非线性随机动态系统学习建模方法[J].北京航空航天大学学报,1996,22(6):682-686. 被引量:1
  • 4Singhal S, Wu L. Training Multilayer Perceptrons with the Extended Kalman Algorithm[J]. Advance in Neural Information Processing Systems, 1988,1 : 133-140.
  • 5de Freitas J F G, Johnson S E, Niranjan M, et al. Global Optimization of Neural Network Models via Sequential Sampiing-Importance Resampling[C]//Proc of the 5th Int'l Conf on Spoken Language Processing, 1998:1311-1315.
  • 6Doucet A, Godsill S, Andrieu C. On Sequential Monte Carlo Sampling Methods for Bayesian Filtering[J]. Statistics and Computing, 2000,10(3) : 197-208.
  • 7Arulampalam M S, Maskell S, Gordon N, et al. A Tutorial on Particle Filters for On-Line Nonlinear/Non-Gaussian Bayesian Tracking[J]. IEEE Trans on Signal Processing, 2002,50(2): 174-188.
  • 8Wen Yu.Nonlinear system identification using discrete-time recurrent neural networks with stable learning algorithms[].InformationSciences.2004
  • 9Vaideh V,Chitra N,Chokkalingam M,et al.Neural network aided Kalman filtering for multitarget tracking applications[].Computers and Electrical Engineering.2001
  • 10Dan Simon.Training radial basis neural networks with the extended Kalman filter[].Neurocomputing.2002

共引文献20

同被引文献9

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部