期刊文献+

基于Adaboost算法的主客观句分类

Classification of Subjective and Objective Clauses Based on Adaboost Algorithm
下载PDF
导出
摘要 中文语句的语义表达复杂,使用单一分类器进行主客观句分类的效果一般。该文提出一种基于Adaboost算法进行主客观句分类的方法。首先介绍了主客观分类的研究现状及一般流程;然后引入Adaboost集成学习算法,并针对算法的退化现象进行了相关的改进;最后在实验中使用了词汇线索特征和2-POS特征作为输入对短文本进行分类,结果表明Adaboost在主客观分类应用中效果良好。 Because the semantic expression of Chinese sentences is complex,the effect is not good to classify subjective and objective sentences by using a single classifier. In this paper,a method based on Adaboost algorithm is proposed for the classification of subjective and objective sentences. The research status and general process of the subjective and objective classification are introduced. Then Adaboost algorithm is introduced and some related improvements are done to avoid the degeneration phenomenon. Finally,lexical feature and 2-POS feature are taken as an input to classify short texts. The experimental results show that Adaboost has a good effect in the application of the subjective and objective classification.
作者 黄瑾娉 陶杰
出处 《长春大学学报》 2015年第12期22-25,共4页 Journal of Changchun University
基金 国家自然科学基金项目(61300059)
关键词 集成学习 ADABOOST 主客观分类 特征选择 ensemble learning Adaboost subjective and objective classification feature selection
  • 相关文献

参考文献6

二级参考文献95

  • 1陈卫,周晓,叶菲,谭营.AdaBoost-NN在雷达信号识别中的应用[J].电子对抗技术,2005,20(1):29-33. 被引量:4
  • 2武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 3王晓丹,孙东延,郑春颖,张宏达,赵学军.一种基于AdaBoost的SVM分类器[J].空军工程大学学报(自然科学版),2006,7(6):54-57. 被引量:22
  • 4李闯,丁晓青,吴佑寿.一种改进的AdaBoost算法——AD AdaBoost[J].计算机学报,2007,30(1):103-109. 被引量:53
  • 5Li G-Z, Yang J Y. Feature selection for ensemble learning and its application[M]. Machine Learning in Bioinformatics, 2008: 135-155.
  • 6Sheinvald J, Byron Dom, Wayne Niblack. A modelling approach to feature selection[J]. Proc of 10th Int Conf on Pattern Recognition, 1990, 6(1): 535-539.
  • 7Cardie C. Using decision trees to improve case-based learning[C]. Proc of 10th Int Conf on Machine Learning. Amherst, 1993: 25-32.
  • 8Modrzejewski M. Feature selection using rough sets theory[C]. Proc of the European Conf on Machine ,Learning. 1993: 213-226.
  • 9Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data[J]. J of Bioinformatics and Computational Biology, 2005, 3(2): 185-205.
  • 10Francois Fleuret. Fast binary feature selection with conditional mutual information[J]. J of Machine Learning Research, 2004, 5(10): 1531-1555.

共引文献493

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部