期刊文献+

宏观弯曲效应对ZBLAN光纤中红外超连续光谱产生的影响

Influences of Macroscopic Bending on Mid-Infrared Supercontinuum Generation in ZBLAN Fibers
原文传递
导出
摘要 基于数值模拟方法研究了弯曲效应对ZBLAN光纤中红外超连续光谱产生的影响。利用有限元方法分析了宏观弯曲效应对不同数值孔径ZBLAN光纤的限制损耗、色散和非线性特性的影响,计算出ZBLAN光纤的弯曲截止波长,基于广义非线性薛定谔方程模拟了ZBLAN光纤中红外超连续谱产生的演化过程。研究发现,在未发生弯曲的情况下,非线性系数在中红外波段迅速下降会限制低数值孔径ZBLAN光纤中的光谱展宽;在发生弯曲时,当孤子中心频率接近弯曲损耗边界时,孤子自频移效应被抑制,光谱展宽停止。 The effect of mid-infrared supercontinnum generation in ZBLAN fibers is numerically investigated.Based on the finite element method, the influences of macroscopic bending on confinement loss, dispersion and nonlinearity of ZBLAN fibers with different numerical apertures are analyzed, and the bending cut- off wavelength of ZBLAN fibers is figured out. The evolution of mid- infrared supercontinuum generation in ZBLAN fibers is simulated by using the general nonlinear Schr?dinger's equation. The results indicate that the drastic dropping of nonlinear coefficient in mid- infrared wavelength region suppresses the spectral broadening of ZBLAN fibers with low numerical aperture when no bending is applied. In the presence of bending, when the central frequency of the soliton approaches the boundary of bending-induced loss region, the soliton selffrequency shift effect is suppressed and the spectral broadening phenomenon is radicated as well.
出处 《光学学报》 EI CAS CSCD 北大核心 2015年第12期66-73,共8页 Acta Optica Sinica
基金 国家自然科学基金(11174154 11174155) 天津市应用基础与前沿技术研究计划(14JCZDJC31300) 固体激光技术重点实验室基金(9140C040113130C04015)
关键词 光纤光学 中红外超连续谱 ZBLAN光纤 弯曲损耗 fiber optics mid-infrared supercontinuum ZBLAN fibers bending loss
  • 相关文献

参考文献25

  • 1Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. Opt Lett, 2000, 25(1): 25-27.
  • 2Morioka T, Mori K, Kawanishi S, et al.. Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers[J]. IEEE Photon Technol Lett, 1994, 6(3): 365-368.
  • 3Takara H. Multiple optical carrier generation from a supercontinuum source[J]. Optics and Photonics News, 2002, 13(3): 48-51.
  • 4Hartl I, Li X D, Chudoba C, et al.. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber[J]. Opt Lett, 2001, 26(9): 608-610.
  • 5Dupont S, Petersen C, Th?gersen J, et al.. IR microscopy utilizing intense supercontinuum light source[J]. Opt Express, 2012, 20(5): 4887- 4892.
  • 6Ke K, Xia C, Islam M N, et al.. Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser[J]. Opt Express, 2009, 17(15): 12627-12640.
  • 7Kaminski C F, Watt R S, Elder A D, et al.. Supercontinuum radiation for applications in chemical sensing and microscopy[J]. Appl Phys B, 2008, 92(3): 367-378.
  • 8Udem T, Holzwarth R, H?nsch T W. Optical frequency metrology[J]. Nature, 2002, 416(6877): 233-237.
  • 9Monnier J D. Optical interferometry in astronomy[J]. Reports on Progress in Physics, 2003, 66(5): 789-857.
  • 10Guo B, Wang Y, Peng C, et al.. Laser-based mid-infrared reflectance imaging of biological tissues[J]. Opt Express, 2004, 12(1): 208- 219.

二级参考文献43

  • 1T Udem, R Holzwarth, T W Hansch. Optical frequency metrology[J]. Nature, 2002, 416(6877): 233-237.
  • 2B Guo, Y Wang, C Peng, et al: Laser-based mid-infrared reflectance imaging of biological tissues[J]. Opt Express, 2004, 12(1): 208-219.
  • 3C L Hagen, J W Walewski, S T Sanders. Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source[J]. IEEE Photon Technol Lett, 2006,18(1): 91-93.
  • 4M Duhant, W Renard, G Canat, et al: Improving mid-infrared supercontinuum generation efficency by pumping a fluoride fiber directly into the anomalous regime at 1995 nm[C]. CLEO/ Europe and EQEC 2011 Conference Digest, Optical Society of America, 2011. CD9_1.
  • 5M Eckerle, C Kieleck, J Widerski, et al: Actively @switched and mode-locked Tm3+-doped silicate 2 m fiber laser for supercontinuum generation in fluoride fiber[J]. Opt Lett, 2012, 37(4) : 512-514.
  • 6J Swiderski, M Maciejewska. Supercontinuum generation with the use of nanosecond pulses at the wavelength of 1550 nm[C]. SHE, 2013, 8702: 870205.
  • 7J Swiderski, M Michalska, G Maze. Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode- locked Tin-doped fiber laser and amplifier system [J]. Opt Express, 2013, 21(7): 7851-7857.
  • 8J Swiderski, M Michalska. Over three-octave spanning supercontinuum generated in a fluoride fiber pumped by Er & Er: Yb-doped and Tm-doped fiber amplifiers [J]. Opt & LaserTechnol, 2013, 52: 75-80.
  • 9C Xia, Z Xu, M N Islam, et aL. 10. 5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 ttm with direct pulse pattern modulation[J]. IEEE Journal on Selected Topics in Quantum Electronics, 2009, 15(2) : 422-434.
  • 10P Kulkarni, V V Alexander, M Kumar, et al: Supercontinuum generation from 1.9 to 4.5 tim in ZBLAN fiber with high average power generation beyond 3. 8 tim using a thulium doped fiber amplifier[J]. JOpt SocAmB, 2011, 28(10): 2486-2498.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部