期刊文献+

粉末冶金组合烧结中空凸轮轴的组织与性能 被引量:3

Microstructure and properties of assembled hollow camshaft prepared by powder metallurgy combined sintering
下载PDF
导出
摘要 采用粉末冶金组合烧结技术制备由Fe-Cr-Mo-P-Si-Cu-C凸轮和16Mn钢管为芯轴组成的中空凸轮轴,对凸轮的密度、硬度等物理性能、摩擦磨损性能和微观组织进行测试与分析,研究烧结致密化机理,并与传统凸轮材料球墨铸铁的摩擦磨损性能进行对比。结果表明:Fe-Cr-Mo-P-Si-Cu-C凸轮材料在烧结过程中产生Fe-C-P三元液相,Cr、Mo元素溶解于液相中使得液相量显著增加,促进液相烧结,体积收缩率高达19.1%。凸轮材料的平均密度为7.51 g/cm3,平均硬度(HRC)53.7,与钢制芯轴形成牢固的冶金结合,扭矩高达1 150 N·m,连接可靠性较好;该凸轮材料的硬度与传统球墨铸铁凸轮材料相近,耐磨性是球墨铸铁的3倍,质量减轻35%,满足发动机使用要求。 A new type of hollow camshaft using Fe-Cr-Mo-P-Si-Cu-C as camshaft and 16Mn steel tube as axis was prepared by powder metallurgy combined sintering technology. The density, hardness, friction and wear property, and microstructure of the hollow camshaft were tested and investigated. The sintering mechanism was also explored. The friction and wear property were compared with that of traditional nodular cast iron camshaft. The results show that Fe-Cr-Mo-P-Si-Cu-C metallurgical powder camshaft material can form Fe-C-P ternary liquid during the process of sintering, at the same time Cr and Mo elements dissolves into the liquid phase, resulting in a significant increase of the liquid phase, which can promote the liquid phase sintering, and the shrinkage rate is as high as 19.1%. The sintered density and hardness (HRC) of powder metallurgy camshaft is 7.51 g/cm3 and 53.7 on average. The camshaft can firmly combine with the steel spindle by metallurgical interface forming in the sintering process, whose torque is as high as 1 150 N/m, and the connection reliability is better. The wear resistance of metallurgical camshaft is 3 times of that of traditional nodular cast iron under the condition of the same hardness, which fits the requirements of engine to use.
出处 《粉末冶金材料科学与工程》 EI 北大核心 2015年第6期959-964,共6页 Materials Science and Engineering of Powder Metallurgy
基金 工信部"高档数控机床与基础制造装备"科技重大专项课题(2012ZX04009011) 科技部国际合作交流项目(2011DFA51840) 国家自然科学基金专项基金资助项目(51341003) 国家高技术研究发展计划资助项目(2013AA031101)
关键词 粉末冶金 中空凸轮轴 组合烧结 powder metallurgy hollow camshaft combined sintering
  • 相关文献

参考文献12

  • 1杨依忠,王振发.装配式凸轮轴制造工艺[J].汽车工艺与材料,2006(7):29-30. 被引量:5
  • 2盛汉荣.新颖的装配式凸轮轴[J].汽车与配件,1996(22):12-13. 被引量:2
  • 3High internal pressure system makes light weight parts from tube [J]. Modem Metals, 1991, 47(8): 46-50.
  • 4李宁,熊计,邱代荣.PM组合式凸轮轴的制造工艺及应用现状[J].小型内燃机与摩托车,2009,38(2):94-96. 被引量:4
  • 5菅昭彻哉,罗明炎.烧结一体化凸轮轴的开发[J].汽车工艺与材料,1986,1(1):18-23.
  • 6周士扬,傅丰慈.焊接式组合凸轮轴[J].汽车工业,1992,4(1):27—31.
  • 7铃木保雄.粉末冶金凸轮轴[J].车用发动机,1987,(4):51-59.
  • 8王守革,李国继,王晓强.液压胀管技术的应用[J].压力容器,2003,20(2):24-27. 被引量:10
  • 9HARALD M, ANDREAS K. Thermal shrink fit process for composite camshafts [J]. Automotive Engineering, 1997, 105(9): 1-5.
  • 10ECKARD Macherauch. X-ray stress analysis [J]. Experimental Mechanics, 1966, 6(3): 140-153.

二级参考文献20

  • 1章林,刘芳,李志友,周科朝.高合金含量铁基烧结材料的致密化及性能[J].粉末冶金材料科学与工程,2005,10(3):172-176. 被引量:4
  • 2杨依忠,王振发.装配式凸轮轴制造工艺[J].汽车工艺与材料,2006(7):29-30. 被引量:5
  • 3Takagi Y, et al. Simuhaneous Attainment of Low Fuel Consumption, High Output Power and Low Exhaust Emissions in Direct injection SI Engines[ C ]. SAE 98 - 01 - 49.
  • 4Greetham G, Chatterley T. Composite camshaf t [ J ] . Power Metallurgy , 1991 , 34 (2) : 119 - 125.
  • 5周士扬译 傅丰慈校.焊接式组合凸轮轴.汽车工业[俄],1992,(1).
  • 6Pierre Blanchard , Salvator Nigarura , Trasorras J R L , et. Assembled Camshaft with Sintered Cam Lobes :Torsional Fatigue Strength and Wear Performance [ C ] . SAE 2000 -01 - 0397.
  • 7M Hagedorn, K Weinert. Manufacturing of composite work- pieces with rolling tools [ J ]. Journal of Materials Processing Technology ,2004 ,153:323-329.
  • 8J M Sprauel, L Gastex. X -ray stress analysis , Mater Sci Forum , 79282 , 1991 , 143- 152.
  • 9铃木保雄著 施林康译.粉末金属凸轮轴.内燃机,1987,(2):45-51.
  • 10李炯辉.金属材料金相图谱[M].北京:机械工业出版社,2006.

共引文献15

同被引文献25

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部