摘要
在易腐性产品的运输过程中,产品的质量会随着时间的流逝而下降,而且产品的数量会随着时间的流逝而减少.考虑在多个客户联合使用某种运输设施时,客户除了支付运输费用外还要承担产品的数量损耗与价值损耗.把易腐性产品的数量损耗、价值损耗以及运输费用之和最为总费用,应用合作博弈理论,将易腐性产品的合作运输问题构造成易腐性产品运输设施选择博弈,在一定条件下,证明了该博弈的核心非空,且为凹博弈.最后,证明了平分成本解的一些性质,以及此解属于易腐性产品运输设施选择博弈的核心.
Obsolescence and deterioration may incur during transportation of perishable products, which cause "quantity loss" and "quality drop", respectively. This paper studies the collabration transportation problem and cost allocation probem for perishable products. The transportation cost and decay value due to quality drop and quantity loss being considered, the cost allocation problem of transportation facility choice is formulated as the cost allocation game. It is proved that the cost allocation game has a non-empty core and also submodular under centain conditons. Later, some properties of the egalitarian solution is discussed and proved to be a core allocation.
出处
《数学的实践与认识》
北大核心
2015年第24期20-30,共11页
Mathematics in Practice and Theory
基金
国家自然科学基金重大研究计划(71090402)
国家自然科学基金面上项目(71271178)
国家自然科学基金青年基金项目(71401118)
教育部人文社会科学研究一般项目(12YJA630057)
四川省教育厅理工科一般项目(14ZB0027)
关键词
易腐性产品
凹博弈
平分成本解
perishable products
submodular game
egalitarian solution