摘要
基于函数P-集合(S^F,S^F)的动态性、规律性,提出函数内P-集合的副集,给出函数内P-集合副集的区间生成结构、区间生成规律,给出内P-规律ω~F的区间拆分规律及其拆分度量,解决了函数内P-集合S^F状态规律受游弋于S^F边缘的元素(函数内P-集合的副集中的函数)的干扰,而呈现出来的动态规律(区间拆分规律)以及动态变化程度(拆分度量)的刻画等问题.最后以实例分析函数内P-集合副集及其区间生成规律在风险投资中的应用.
Based on the dynamic characteristics and law characteristics of function P- sets(SF, sF), assistant set of function internal P-set is improved, the structure and the law of interval generation of assistant set of function internal P-set is given, interval separation law and interval separation metric of internal P-lawwFare also given. The description of dynamic law (interval separation law) of function internal P-setSFwitch affected by the element (the element is function of assistant set of function inter- nal P-set) of moving about edge and its variation degree (separation metric) issues such us is solved. Assistant set of function internal P-set and its interval generation law is applied to risk investment.
出处
《数学的实践与认识》
北大核心
2015年第24期167-175,共9页
Mathematics in Practice and Theory
基金
三明学院自然科学基金(B201101/G)
关键词
函数内P-集合
函数内P-集合的副集
区间生成规律
区间拆分规律
function internal P-set
assistant set of function internal P-set
interval generationlaw
interval separation law