期刊文献+

共振情形下二阶多点边值问题解的存在性 被引量:2

Existence of Solutions for Second-Order Multi-Point Boundary Value Problems at Resonance
原文传递
导出
摘要 运用Mawhin重合度理论,讨论了共振情形下一类二阶多点边值问题解的存在性,在算子L满足Ker L=2的条件下,获得了该问题解的存在性结果. In this paper, by using Mawhin coincidence degree theorem, we study the solv- ability under the conditions of Ker L = 2, the existence of solution for the above second-order multi-point boundary value problems at resonance are obtained.
作者 杜睿娟
出处 《数学的实践与认识》 北大核心 2015年第24期272-278,共7页 Mathematics in Practice and Theory
基金 甘肃省自然科学基金(145RJZA075) 甘肃政法学院科研资助青年项目(GZF2013XQNLW030)
关键词 多点边值问题 存在性 CARATHEODORY条件 共振 Multi-point boundary value problem existence Caratheodory conditions res-onance
  • 相关文献

参考文献9

  • 1II'ii V A, Moiseev E I. Non-local boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects[J]. J Differential Equations, 1987, 23: 803- 810.
  • 2Gupta C P. Solvability of a multi-point value problem for a second order equation[J]. J Math Anal Appl, 1992, 168: 540-551.
  • 3Gupta C P. A generalized multi-point boundary value problem for second order ordinary differential equations[J]. Appl Math Comput, 1998, 89: 133-146.
  • 4Ma R. Positive solutions of a nonlinear three-point boundary value problem[J]. Elec J Diff Equa, 1999, 34: 1-8.
  • 5Liu X, Du Z, Ge W: Solvability of multipoi::t boundary value problems at resonance for higer-order ordinary differential equations[J]. Appl Math Comput, 2005, 49: 1-11.
  • 6杜睿娟.共振情形下四点泛函边值问题解的存在性[J].纯粹数学与应用数学,2013,29(3):255-263. 被引量:2
  • 7Bai Z, Ge W. Existence and multiplicity of solutions for four-point boundary value problems at resonance[J]. Nonli Anal, 2005, 60: 1151-1162.
  • 8Pang H, Ge W. Existence and multiplicity of solutions for four-point boundary value problems at resonance[J]. Acta Mathematica Sinica Series, 2005, 48: 281-290.
  • 9Mawhin. Topological degree methods in nonlinear boundary value problems, in[C]// NSFCBMS Regional Conference Series in Mathematics, Amer. Math. Soc., Providence, RI, 1997.

二级参考文献7

  • 1姚庆六.线性增长限制下一类三阶边值问题的可解性[J].纯粹数学与应用数学,2005,21(2):164-167. 被引量:11
  • 2Zhang G, Sun J. Positive solutions of m-point boundary value problems[J]. J. Math. Anal. Appl., 2004,29(1): 406-418.
  • 3Padhi S, Shilpee Srivastava. Multiple periodic solutions for nonlinear first order functional differential equations with applications to population dynamics[J]. Appl. Math. Comput., 2008,203(1):1-6.
  • 4An Y. Existence of solution for a three-point boundary problem at resonance[J]. Non. Anal., 2006,65(3):1633- 1643.
  • 5Rachunkove, Stanek. Topological degree method in functional boundary value problems at resonance[J]. Nonlinear Anal., 1996,27:271-285.
  • 6Mawhin J. Topological degree methods in nonlinear boundary value problems[C]// NSF-CBMS Regional Conference series in Mathematics. Providence R I: American Mathematical Society, 1997.
  • 7莫宜春,孙晋易,王珍燕.一类泛函微分方程半正问题的正周期解[J].纯粹数学与应用数学,2012,28(1):137-142. 被引量:1

共引文献1

同被引文献20

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部