摘要
This study proposes an algorithm for max- imizing strip width in orthogonal tum-miUing based on variable eccentric distance. The machining error model is first established based on the local cutting profile at the contact line. The influencing factors of the strip width are then investigated to analyze their features and determine an optimizing strategy. The optimized model for maximum machining strip width is formulated by adopting a variable eccentric distance. Hausdorff distance and Fr6chet distance are introduced in this study to implement the constraint function of the machining error in the optimized model. The computing procedure is subsequently provided. Simulations and experiments have been conducted to verify the effectiveness of the proposed algorithm.
This study proposes an algorithm for max- imizing strip width in orthogonal tum-miUing based on variable eccentric distance. The machining error model is first established based on the local cutting profile at the contact line. The influencing factors of the strip width are then investigated to analyze their features and determine an optimizing strategy. The optimized model for maximum machining strip width is formulated by adopting a variable eccentric distance. Hausdorff distance and Fr6chet distance are introduced in this study to implement the constraint function of the machining error in the optimized model. The computing procedure is subsequently provided. Simulations and experiments have been conducted to verify the effectiveness of the proposed algorithm.