期刊文献+

Kuznetsov–Ma soliton and Akhmediev breather of higher-order nonlinear Schrdinger equation

Kuznetsov–Ma soliton and Akhmediev breather of higher-order nonlinear Schrdinger equation
下载PDF
导出
摘要 In terms of Darboux transformation, we have exactly solved the higher-order nonlinear Schr6dinger equation that describes the propagation of ultrashort optical pulses in optical fibers. We discuss the modulation instability (MI) process in detail and find that the higher-order term has no effect on the MI condition. Under different conditions, we obtain Kuznetsov-Ma soliton and Akhmediev breather solutions of higher-order nonlinear Schredinger equation. The former describes the propagation of a bright pulse on a continuous wave background in the presence of higher-order effects and the soliton's peak position is shifted owing to the presence of a nonvanishing background, while the latter implies the modulation instability process that can be used in practice to produce a train of ultrashort optical soliton pulses. In terms of Darboux transformation, we have exactly solved the higher-order nonlinear Schr6dinger equation that describes the propagation of ultrashort optical pulses in optical fibers. We discuss the modulation instability (MI) process in detail and find that the higher-order term has no effect on the MI condition. Under different conditions, we obtain Kuznetsov-Ma soliton and Akhmediev breather solutions of higher-order nonlinear Schredinger equation. The former describes the propagation of a bright pulse on a continuous wave background in the presence of higher-order effects and the soliton's peak position is shifted owing to the presence of a nonvanishing background, while the latter implies the modulation instability process that can be used in practice to produce a train of ultrashort optical soliton pulses.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期520-524,共5页 中国物理B(英文版)
基金 supported by the Key Project of Scientific and Technological Research in Hebei Province,China(Grant No.ZD2015133)
关键词 Kuznetsov-Ma soliton Akhmediev breather Kuznetsov-Ma soliton, Akhmediev breather
  • 相关文献

参考文献55

  • 1Hasegawa A and Tappert F D 1973 Appl. Phys. Lett. 23 142.
  • 2Hasegawa A and Tappert F D 1973 Appl. Phys. Lett. 23 171.
  • 3Malomed B A 1994 Opt. Lett. 19 341.
  • 4Kruglov V I, Peacock A C and Harvey J D 2003 Phys. Rev. Lett. 90 113902.
  • 5Hasegawa A 2000 IEEE J. Sel. Top. Quantum Electron. 6 1161.
  • 6Herr T, Brasch V, Jost J D, Mirgorodskiy I, Lihachev G, Gorodetsky M L and Kippenberg T J 2014 Phys. Rev. Lett. 113 123901.
  • 7Mollenauer L F, Stolen R H, Gordon J P and Tomlinson W J 1983 Opt. Lett. 8 289.
  • 8Kr?kel D, Halas N J, Giuliani G and Grischkowsky D 1988 Phys. Rev. Lett. 60 29.
  • 9Weiner A M, Heritage J P, Hawkins R J, Thurston R N, Kirschner E M, Leaird D E and Tomlinson W J 1988 Phys. Rev. Lett. 61 2455.
  • 10Kodama Y 1985 J. Stat. Phys. 39 597.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部