期刊文献+

在比下半连续更弱的假设下抽象经济的均衡(英文)

Equilibria of the abstract economies under an assumption weaker than lower semi-continuity
下载PDF
导出
摘要 文章进一步研究了这样的抽象经济 ,它具有有限或无限维的非紧的策略空间 ,被约束对应限制下的偏好对应在弱下半连续或 2—下半连续的假设下 ,证明了抽象经济均衡的存在 .此外 。 economies with finitely or countable infinitely dimensional noncompact strategy spaces and prove the existence of equilibria with the assumption that preference correspondences confined by constraint correspondences are weak lower semicontinuous or 2-lower semicontinuous. Besides, we also improve the assumption on preference correspondences.
作者 张玉成
出处 《海南师范学院学报(自然科学版)》 2002年第1期1-6,共6页 Journal of Hainan Normal University:Natural Science
基金 海南省自然科学基金项目 (1990 1) 海南省教育厅资助项目 (HJSK990 9- 1)
关键词 抽象经济 弱下半连续 2-下半连续 均衡 策略空间 偏好对应 约束对应 weak lower semicontinuous 2-lower semicontinuous equilibrium
  • 相关文献

参考文献12

  • 1[1]Shafter W, Sonneshein H. Equilibrium in abstract economies without ordered preferences [J]. J Math Econom,1975, 2: 345- 348.
  • 2[2]Borglin A, Keiding H. Existence of equilibrium actions and of equilibrium: A note on the ‘ new' existence theorem[J]. J Math Econom, 1976, 3:313-316.
  • 3[3]Tan K K, Yuan X Z, Lower semicontinuity of multivalued mappings of the First World Congress of Nonlinear Analysis[R]. Walter de Gruvter, 1993.
  • 4[4]Ding X P. Equilibria of abstract economies with correspondences without open sections [J]. J Sichuan Normal Univ(N.S.), 1995, 18(6): 5-18.
  • 5[5]Ding X P. Equilibria of generalized games [J]. J Sichuan Normal Univ (N.S), 1997, 20(6): 22 - 27.
  • 6丁协平.EQUILIBIA OF NONCOMPACT GENERALIZED GAMES WITH CORRESPONDENCES WITHOUT OPEN LOWER SECTIONS[J].Acta Mathematica Scientia,1998,18(1):79-89. 被引量:1
  • 7[7]Ding X P. Generalized games and generalized quasi-variational inequalitites in locally convex topological vector spaces[J]. J Sichuan Normal Univ (N.S), 2000, 23(2): 109- 116.
  • 8[8]Kothe G. Toplogical Vector Spaces I [M]. Berling: Spring-Verlag, 1993.
  • 9[9]Fan K. Fixed-points and minimax theorems in locally convex topological linear spaces [J]. Proc Nat Acad Sci USA,1952, 38:121 - 126.
  • 10[10]Himmelberg C J. Fixed points of multifunction [J]. J Math Anal Appl, 1972, 38:205 - 207.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部