期刊文献+

一种发现新浪微博优质用户的方法

Discovery of high quality users in Sina microblog
下载PDF
导出
摘要 基于信任转移模型和广度优先遍历的算法思想,提出了一种用于发现新浪微博优质用户的方法。选择10个领袖用户作为爬虫的种子用户,基于用户好友关系采用广度优先遍历算法进行用户信息采集。对采集到的结果从用户好友、粉丝情况及用户重复率角度进行了分析,发现随采集深度的增加,用户质量会有所下降,采集深度到达一定值时,优质用户规模不会有太大变化。通过与"热门微博TOP10"用户对比表明,该方法能够发现相对优质的微博用户。 Based on the idea of Trust Transfer model and Breadth First Search(BFS) algorithm,this paper presents a method for discovering high quality users of Sina microblog. Ten leaders are selected as the seed user for the crawler,then BFS algorithm is used to collect user information from the perspective of the relationship between users and friends. The collected data are analyzed from the aspects of the friends,fans and user repetition rate. It is found that with the increase of sampling depth,the quality of the user will decline. When the collecting depth reaches a certain value,the high-quality user scale will not change too much. Compared with the popular microblog TOP10 users,the experiment shows that the proposed method can obtain relatively high quality micro-blog users.
出处 《北京信息科技大学学报(自然科学版)》 2017年第4期69-74,共6页 Journal of Beijing Information Science and Technology University
基金 863计划课题"面向基础教育的知识能力智能测评与类人答题验证系统"(2015AA015409)
关键词 新浪微博 优质用户 信任转移模型 广度优先遍历 Sina microblog high quality user trust transfer model breadth first search
  • 相关文献

参考文献5

二级参考文献63

  • 1任一奇,王雅蕾,王国华,冯伟.微博谣言的演化机理研究[J].情报杂志,2012,31(5):50-54. 被引量:40
  • 2陈小飞 王轶彤 冯小军.一种基于网页质量的PageRank算法改进.计算机研究与发展,2009,46:381-387.
  • 3CHA M, GUMMADI K P. Measuring user influence in Twitter: the million follower fallacy [ J ]. Artificial Intelligence, 2010,146 ( 1 ) : 10-17.
  • 4PAL A, COUNTS S. Identifying topical authorities in microblogs [ J ]. Human Factors,2011,6( 1 ) :45-54.
  • 5WENG Jian-shu, LIM Ee- peng, JIANG Jing,et al. TwitterRank : finding topic- sensitive influential Twitterers [ C ]//Proc of the 3rd International Conference on Web Search and Web Data Mining. 2010:261-270.
  • 6HAVELIWALA T H. Topic-sensitive PageRank [ C ]//Proc of the 11 th International Conference on World Wide Web. New York: ACM Press,2002:517-526.
  • 7ROMERO D M, GALUBA W, ASUR S, et al. Influence and passivity in social media[ C ]//Lecture Notes in Computer Science, vol 6913. 2011:18-33.
  • 8BAKSHY E, HOFMAN J M, WATTS D J, et al. Identifying "influen- cers" on Twitter[ C]//Proc of WSDM. New York:ACM Press,2011.
  • 9DAVE K, BHATT R, VARMA V. Identifying influeneers in social net- works[ C]//Proc of the 5th International Conference on Weblogs and Social Media. [S. 1. ] : AAAI Press,2011:1-9.
  • 10KIMURA M, SAITO K, NAKANO R, et al. Extracting influential nodes on a social network for information diffusion[J]. Data Mining and Knowledge Discovery,2009,20 ( 1 ) :70-97.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部