期刊文献+

网络瞄准中的异步传感器空间配准算法 被引量:1

Algorithm of asynchronous sensors bias estimation in networked targeting
下载PDF
导出
摘要 针对现有异步空间配准算法在目标机动时无法准确估计传感器系统误差的问题,研究了一种基于内插外推时间配准的异步传感器空间配准算法.该算法首先采用内插外推时间配准算法实现两传感器的数据同步,随后根据时间配准结果构建伪量测方程.不同于其他文献根据目标状态向量和时间差求解加权系数,从而构造与目标运动状态无关的伪量测方程的方法,该算法的伪量测方程构建过程与目标状态向量无关,且可以证明由时间配准结果构造的伪量测也与目标状态无关.因此该算法可有效解决目标机动条件下的异步传感器空间配准问题.仿真实验验证了该算法在目标作蛇形机动的条件下仍然可准确地对传感器的系统误差进行估计. Aimed at the problem that the algorithm of asynchronous sensors bias estimation cannot adapt to the maneuver targets,a novel algorithm based on the interpolation was researched. Firstly,the measurement was changed into synchronization data by using the time registration method. Then,the pseudo measurement equation could be obtained according to the time registration results. Be different from other algorithms of which the pseudo measurement,independent of target state,is obtained by getting a adding coefficient according to the target state vector and time of arrival( TOA),the depseudo measurement deigned has no relationship to the target state vector. Moreover,the derivation of the pseudo measurement according to the time registration results is also independent of the movement of target. So,the problem of asynchronous sensors bias estimation with maneuver targets can be solved by the algorithm proposed. The results of simulation show that the sensor bias could be exactly estimated when the target takes a snake maneuver.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2014年第12期1707-1712,共6页 Journal of Beijing University of Aeronautics and Astronautics
关键词 异步传感器 空间配准 机动目标 数据融合 网络瞄准 asynchronous sensors spatial registration maneuver targets data fusion networked targeting
  • 相关文献

参考文献5

二级参考文献36

  • 1张安民,韩崇昭.测量噪声相关线性系统异类传感器航迹融合[J].电子与信息学报,2005,27(3):471-473. 被引量:2
  • 2孙隆和.网络瞄准及相关技术——瞄准和打击活动目标[J].电光与控制,2005,12(3):1-5. 被引量:18
  • 3宋建梅,郑建强.平方根滤波在捷联寻的制导系统中的应用研究[J].北京理工大学学报,2006,26(6):475-477. 被引量:3
  • 4Wan Eric A. Rudolph van der Menve . The unscented Kalman filter for nonlinear estimation[C]//IEEE Adaptive Systems for Signal Processing, Communications, and Control Symposium , 2000: 153 - 158.
  • 5Simo Sarkka. On unscented Kalman filtering for state estimation of continuous time nonlinear systems[J] IEEE Trans. on Automatic Control, 2007, 52(9) : 1631 - 1641.
  • 6Soonho Jeong. Topics in multi-sensor maneuvering target tracking[D]. Auburn: Auburn University, 2005.
  • 7Blackman Samuel S, Multiple hypothesis tracking for multiple target tracking [J]. Aerospace and Electronic Systems Magazine, IEEE, 2004,19(1):5-12.
  • 8Tudoroiu N, Zaheeruddin M. Fault detection and diagnosis of valve actuators in discharge air temperature (DAT) systems, using inter active unscented Kalman filter estimation[C]//IEEE International Symposium on Industrial Electronics, 2006 : 9 - 12.
  • 9王昭松,宋建梅.基于UKF滤波的捷联制导系统视线角速率提取方法研究[C]//中国毪行力学学术年会论文集,2007:93-97.
  • 10Bar-Shalom Y. On hierarchical tracking for the real world[J]. IEEE Trans. on Aerospace and Electronic Systems, 2006, 42 (3) :846 - 850.

共引文献77

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部