期刊文献+

非线性KP-BBM方程行波解的动态分析 被引量:1

Dynamic analysis for travelling wave solutions of the nonlinear KP-BBM equation
原文传递
导出
摘要 研究了一类受到阻尼扰动和外激励扰动的非线性KP-BBM方程,通过行波变换转化为常微分方程,运用Melnikov方法和数值积分法来计算同宿轨稳定流形和不稳定流形间的距离,得到了该系统在一定参数条件下,孤立波历经倍周期分岔走向混沌之路,并且给出对应的混沌阀值曲线,运用仿真实验验证结论的正确性。 The nonlinear KP-BBM system with damping perturbation and external excitation disturbance is studied. By using a traveling wave transform,an ordinary differential equation is established. A Melnikov method and a numerical integral method are presented to compute the distance of a stable manifold and an unstable manifold for a homoclinic orbit,and under some parameter conditions a plot of thresholds above which chaos may occur is obtained,which implied that solitary waves undergo period doubling bifurcation and become eventually chaos. Finally simulations are carried out for this system.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期125-128,共4页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
关键词 非线性KP-BBM方程 倍周期分岔 MELNIKOV方法 数值积分法 nonlinear KP-BBM equation period doubling bifurcation Melnikov method numerical integral method
  • 相关文献

参考文献5

  • 1蔡炯辉,侯雪炯.Kadomtsov-Petviashvili-Benjamin-Bona-Mahony方程的扭波解[J].玉溪师范学院学报,2009,25(8):13-17. 被引量:5
  • 2罗国湘,卢钇存,陈爱永.广义KP-BBM方程的行波解分支[J].桂林电子科技大学学报,2008,28(1):44-47. 被引量:2
  • 3Ming Song,Chenxi Yang,Bengong Zhang.Exact solitary wave solutions of the Kadomtsov–Petviashvili–Benjamin–Bona–Mahony equation[J].Applied Mathematics and Computation.2009(4)
  • 4Abdul-Majid Wazwaz.The extended tanh method for new compact and noncompact solutions for the KP–BBM and the ZK–BBM equations[J].Chaos Solitons and Fractals.2007(5)
  • 5Abdul-Majid Wazwaz.Exact solutions of compact and noncompact structures for the KP–BBM equation[J].Applied Mathematics and Computation.2004(1)

二级参考文献3

共引文献5

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部