期刊文献+

超平面构形相交偏序集及其元素的Mbius函数值的算法 被引量:1

An algorithm for computing the intersection of a partially ordered set and its Mbius function of hyperplane arrangements
原文传递
导出
摘要 给出了超平面构形的相交偏序集中元素及其Mbius函数值的有效算法,同时给出了构形的特征多项式的算法。对三维空间中不多于5个平面的构形在L-等价下进行了分类。 An algorithm for computing the intersection of a partially ordered set and its Mbius function for hyperplane arrangements is formulated. This algorithm gives the characteristic polynomial of the arrangement. A classification of arrangements with at most five planes in three-dimensional space was made under the L-equivalence.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第5期124-128,共5页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 国家自然科学基金(11071010)
关键词 超平面构形 相交偏序集 MOBIUS函数 特征多项式 算法 hyperplane arrangement intersection partially ordered set Mbius function characteristic polynomial algorithm
  • 相关文献

参考文献3

二级参考文献14

  • 1章江华,姜广峰.OrlikSolomon代数的NBC基的一个算法[J].北京化工大学学报(自然科学版),2005,32(1):85-89. 被引量:4
  • 2董芸,姜广峰.一类混杂构形的特征多项式[J].北京化工大学学报(自然科学版),2007,34(2):207-210. 被引量:2
  • 3张曦,姜广峰.超平面构形的ф_3不变量的一个算法[J].北京化工大学学报(自然科学版),2007,34(4):446-448. 被引量:8
  • 4Orlik P, Terao H. Arrangements of hyperplanes[M]. Berlin: Springer-Verlag, 1992.
  • 5Orlik P, Terao H. Commutative algebras for arrangements[J]. Nagoya Math J, 1994, 134:65 - 73.
  • 6Wiens J. The module of derivations for an arrangement of subspaces[J]. Pacific Journal of Mathematics. 2001, 198 (2): 501- 512.
  • 7Garber D, Teicher M, Vishne U. π1-classifieation of real arrangements with up to eight lines[J]. Topology, 2003, 42(1): 265-289.
  • 8Stanley R P. An introduction to hyperplane arrangements [ M ]. Washington: Park City Mathematics Series, 2004.
  • 9Falk M. Arrangements and cohomology [ J]. Annals of Combinatorics, 1997, 1: 135-158.
  • 10Falk M. Combinatorial and algebraic structure in Orlik- Solomon algebras[J]. Europ J Combinatorics, 2001, 22 (3) : 687-698.

共引文献5

同被引文献17

  • 1张曦,姜广峰.超平面构形的ф_3不变量的一个算法[J].北京化工大学学报(自然科学版),2007,34(4):446-448. 被引量:8
  • 2Orlik P, Terao H. Arrangements of hyperplanes [ M ]. Berlin, Germany: Springer-Verlag, 1992.
  • 3Garber D, Teicher M, Vishne U. ~'~-classification of real arrangements with up to eight lines[ J]. Topology, 2003, 42 : 265-289.
  • 4Zhang X, Jiang G F. An algorithm for invariant ~P3 of hy- perplane arrangements[ J]. Journal of Beijing University of Chemical Technology : Natural Science, 2007, 34 (4) : 446-448. (in Chinese).
  • 5Zhang J, Guo L, Jiang G F. Invariant ~v3 of line arrange- ments on a plane [ J ]. Journal of Beijing University of Chemical Technology: Natural Science, 2011, 38 ( 6 ) : 125-129. (in Chinese).
  • 6Zhang L, Guo L, Sun X M, et al. Classification of plane arrangements by ~3 invariant[Jl. Journal of Beijing Uni- versity of Chemical Technology: Natural Science, 2013, 40(5): 118-122. (in Chinese).
  • 7Hu W T, Feng M F, GuoQ M, etal. The globalinvari- ant of graphic hyperplane arrangements [ J]. Journal of Beijing University of Chemical Technology: Natural Sci- ence, 2014, 41(6) : 119-123. (in Chinese).
  • 8Orlik P, Terao H. Commutative algebras for arrangements [J]. Nagoya Math J, 1994, 134: 65-73.
  • 9Li L, Jiang G F. The characteristic polynomial of a class of plane arrangement[ J]. Journal of Beijing University of Chemical Technology: Natural Science, 2009, 36 (6) : 117-122. (in Chinese).
  • 10Gao R M, Pei D H. The algorithms of characteristic poly- nomial and supersolvability of a hyperplane arrangemnet [ J]. Journal of Shandong University: Natural Science, 2014, 49(2): 52-57. (in Chinese).

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部