期刊文献+

多小波密度函数估计方法 被引量:2

Estimation methodology for a multiwavelet density function
原文传递
导出
摘要 密度估计在解决一些统计问题中有着重要的作用,基于小波基的正交性和良好的自适应性,密度函数估计的小波方法比传统非参数密度估计方法有着一定的优越性。本文基于密度函数估计的单小波方法推广到多小波密度估计中,并对多小波密度函数线性估计进行稳健性分析,得到其收敛阶。最后用此方法对实验数据进行处理,通过实例分析说明多小波密度函数估计方法的有效性。 Density estimation plays a crucial role in the solution of statistical problems. By virtue of the orthogonality and adaptation of wavelet basis,wavelet density estimation is superior to nonparametric density estimation in many aspects. In this paper,we generalize a multiwavelet density estimation method to obtain order of convergence by robustness analysis. Finally,the experimental data were compared with the results from the proposed method confirming the effectiveness of the multiwavelet density function method.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期125-128,共4页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 国家自然科学基金(61272028)
关键词 多小波 密度估计 收敛阶 multiwavelet density estimation rate of convergence
  • 相关文献

参考文献7

  • 1Christophe Chesneau,Isha Dewan,Hassan Doosti.Nonparametric estimation of a two dimensional continuous–discrete density function by wavelets[J]. Statistical Methodology . 2014
  • 2Judson B. Locke,Adrian M. Peter.Multiwavelet density estimation[J]. Applied Mathematics and Computation . 2012
  • 3Rosenblatt M.Remarks on Some Nonparametric Estimates of a Density Function. Annals of Mathematics . 1956
  • 4Masanobu Taniguchi,Yoshihide Watanabe.Statistical analysis of curved probability densities. Journal of Multivariate Analysis . 1994
  • 5Paul Doukhan.Formes de Toeplitz associ\’ees \`a une analyse multi-\’echelle. (Toeplitz forms associated to a multiscale analysis). C. R. Acad. Sci., Paris, S\’er. I . 1988
  • 6Antoniadis A,Carmona R.Multiresolution analyses and wavelets for density estimation. . 1991
  • 7Hrdle W,Kerkyacharian G,Picard D,et al.Wavelets,Approximation,and Statistical Applications. . 1998

同被引文献21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部