期刊文献+

一类随机微分方程向后欧拉解的指数稳定性

Exponential stability of backward Euler approximations to a class of stochastic differential equations
原文传递
导出
摘要 本文给出随机微分方程向后欧拉逼近解满足指数稳定性的充分条件。通过将线性增长条件改为耗散性条件,改进了已有的结果。此外,构造了一个例子,并通过数值模拟验证了本文的结论。 We provide some sufficient conditions to ensure the exponential stability of backward Euler approximation solutions of stochastic differential equations. We improve the known results by replacing the linear growth condition with the dissipative condition. Moreover,an example is constructed and numerical simulation is carried out to support our conclusion.
作者 兰光强 张翀
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期120-123,共4页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 国家自然科学基金(NSFC11026142) 北京市青年英才项目(BJYC34)
关键词 随机微分方程 向后欧拉逼近 均方指数稳定性 几乎处处指数稳定性 stochastic differential equation backward Euler approximation mean square exponential stability almost surely exponential stability
  • 相关文献

参考文献10

  • 1Lin Chen,Fuke Wu.Almost sure exponential stability of the θ -method for stochastic differential equations[J]. Statistics and Probability Letters . 2012 (9)
  • 2Existence of strong solutions for It?’s stochastic equations via approximations[J]. Probability Theory and Related Fields . 1996 (2)
  • 3F. Wu,X. Mao,L. Szpruch.Almost sure exponential stability of numerical solutions for stochastic delay differential equations. Numerical Mathematics . 2010
  • 4Higham D J,MAO Xue-rong,Stuart A M.Exponential Mean-Square Stability of Numerical Solutions to StochasticDifferential Equations. LMS J Comput Math . 2003
  • 5Xuerong M,Lukasz S.Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients. Journal of Computational and Applied Mathematics . 2013
  • 6Higham D J,MAO Xue-rong,YUAN Cheng-gui.Almost Sure and Moment Exponential Stability in the NumericalSimulation of Stochastic Differential Equations. SIAM Journal on Numerical Analysis . 2007
  • 7Mao X R.Stochastic differential equations and applications. . 2007
  • 8Liu W,Foondun M,Mao X R.Mean square polynomial stability of numerical solutions to a class of stochastic differential equations. Statistics Probability Letters . 2014
  • 9Lan G Q,Wu J L.New sufficient conditions of existence,moment estimations and non confluence for SDEs with non-Lipschitzian coefficients. Stochastic Processes and Their Applications . 2014
  • 10Mao X R,Szpruch L.Strong convergence rates for backward Euler-Maruyama method for nonlinear dissipativetype stochastic differential equations with super-linear diffusion coefficients. Stochastics . 2013

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部