摘要
本文给出随机微分方程向后欧拉逼近解满足指数稳定性的充分条件。通过将线性增长条件改为耗散性条件,改进了已有的结果。此外,构造了一个例子,并通过数值模拟验证了本文的结论。
We provide some sufficient conditions to ensure the exponential stability of backward Euler approximation solutions of stochastic differential equations. We improve the known results by replacing the linear growth condition with the dissipative condition. Moreover,an example is constructed and numerical simulation is carried out to support our conclusion.
出处
《北京化工大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第4期120-123,共4页
Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金
国家自然科学基金(NSFC11026142)
北京市青年英才项目(BJYC34)
关键词
随机微分方程
向后欧拉逼近
均方指数稳定性
几乎处处指数稳定性
stochastic differential equation
backward Euler approximation
mean square exponential stability
almost surely exponential stability