期刊文献+

钓鱼网站分类检测算法的比较性研究 被引量:1

Research on the Performance of Phishing Classification Detection Algorithm
下载PDF
导出
摘要 钓鱼网站一直是网络安全中需要解决的难题之一,它的隐蔽性很高,但造成的损失往往很大.针对钓鱼网站的研究,有很多学者通过机器学习算法对钓鱼网站和正常网站进行分类.根据在钓鱼网站检测中常用的分类算法(KNN;SVM;贝叶斯)为基础,通过对网站的URL特征和页面内容特征进行实验比较研究.实验结果表明,在URL特征和页面内容特征上,线性SVM分类器的准确率和召回率都高于KNN算法和多项式的朴素贝叶斯算法. Phishing has always been one of the difficult problems to be solved in network security.It has high concealment,but the loss caused by it is often very large.For the research of phishing,many scholars classify phishing and normal websites by machine learning algorithm.This paper is mainly based on the classification algorithm(KNN;SVM;Bayes)commonly used in phishing detecting and though the URL characteristics and page content characteristics of the website are compared and studied experimentally.Experimental results show that the accuracy and recall rate of linear SVM classifier are higher than KNN algorithm and polynomial Native Bayes algorithm in URL feature and page content feature.
作者 王文腾 王传涛 袭薇 佟晖 WANG Wenteng;WANG Chuantao;XI Wei;TONG Hui(School of Mechanical-Electronic and Vehicle Engineering,Beijing University of Civil Engineering and Architecture,Beijing100044;Beijing Public Security Bureau,Beijing100740;Shanghai Key Laboratory of Information Security Integrated Management Technology,Shanghai200240)
出处 《北京建筑大学学报》 2019年第1期76-81,共6页 Journal of Beijing University of Civil Engineering and Architecture
基金 国家自然科学基金项目(11774380)
关键词 钓鱼网站 机器学习 KNN SVM 贝叶斯 分类 phishing machine learning KNN SVM Bayes classifier
  • 相关文献

参考文献3

二级参考文献43

  • 1Anti-Phishing Working Group [EB/OL]. http://www.antiphishing. org, 2008-01/2011-12-15.
  • 2PhishTank [EB/OL]. http://www.phishtank.com, 2011-04/2011-12-15.
  • 3Engin Kirda, Christopher Kruegel. Protecting Users against Phishing Attacks[J]. The Computer Journal, 2006, 49(05):554-561.
  • 4Ian Fette, Norman Sadeh, Anthony Tomasic. Learning to Detect Phishing Emails[C]. In Proc. of the WWW 2007, Alberta, Canada, May 8-12, 2007: 649-656.
  • 5Chenfeng Vincent Zhou, Christopher Leckie, Shanika Karunasekera. Collaborative Detection of Fast Flux Phishing Domains[J]. Journal of Networks, 2009, 4(01):75-84.
  • 6D. Kevin McGrath, Minaxi Gupta. Behind Phishing: An Examination of Phisher Modi Operandi[C]. In Proc. of the 1st Usenix Workshop on Large- Scale Exploits and Emergent Threats, California USA, April 15 2008:1-8.
  • 7Tyler Moore, Richard Clayton. The Impact of Incentives on Notice and Take-down[C]. In Proc. of the 7th Workshop on the Economics of Information Security, New Hampshire USA, June 25-28 2007: 1-24.
  • 8Christian Ludl, Sean McAUister, Engin Kirda,et al.. On the Effectiveness of Techniques to Detect Phishing Sites[C]. In Proc. of the 4th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, Lucerne Switzerland, July 12-13 2007:20-39.
  • 9Steve Sheng, Brad Wardman, Gary Warner, et al.. An Empirical Analysis of Phishing Blacklists[C]. In Proc. of the sixth Conference on Email and Anti-Spare, California USA, July 16-17 2009.
  • 10Pawan Prakash, Manish Kumar, Ramana Rao Kompella, et al.. PhishNet: Predictive Blacklisting to Detect Phishing Attacks[C]. In Proc. of the IEEE INFOCOM, San Diego Canada, March 14-19 201011-5.

共引文献53

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部