期刊文献+

基本命题逻辑BPL带标的矢列演算系统

Sequence Calculus System for Basic Propositional Logic
下载PDF
导出
摘要 构造基本命题逻辑BPL带标的矢列演算系统,该系统G_(3BPL)只有公理和逻辑规则,没有结构规则,结构规则被吸收在公理和逻辑规则中,并且所有的规则都是保持高度可逆的。证明弱化规则、收缩规则在G_(3BPL)中是保持高度可允许的,并证明切割消去定理,该系统具有弱子公式性质。 A label sequence calculus G3 BPLfor basic propositional logic is developed in the present paper.This system has axioms, logical rules and mathematical rule only. The structural rules are absorbed in these ax-ioms and logical rules. In addition, all the rules of G3 BPlare height-preserving invertible and the rules of weak-ening and contraction are height-preserving admissible. We proved the cut-elimination theorem holds forG3 BPL, this system has weak sub-formula property.
作者 陈钰
出处 《毕节学院学报(综合版)》 2016年第3期72-78,共7页 Journal of Bijie University
关键词 带标的矢列演算系统 基本命题逻辑 证明论. Label Sequence Calculus Basic Propositional Logic Proof Theory
  • 相关文献

参考文献8

  • 1Suzuki Y,Ono H.Hibert style proof system for BPL. . 1997
  • 2Simpson A,Simpson A.The Proof Theory and Semantics of Intu-itionistic Modal Logic. . 1994
  • 3Sara Negri.??Proof Analysis in Modal Logic(J)Journal of Philosophical Logic . 2005 (5)
  • 4Gabbay D M.LDS-labelled deductive systems. . 1990
  • 5Albert Visser.??A propositional logic with explicit fixed points(J)Studia Logica . 1981 (2)
  • 6Katsumasa Ishii,Ryo Kashima,Kentaro Kikuchi.Sequent calculi for Visser’s propositional logics. Notre Dame J. Formal Logic . 2001
  • 7Negri S,Von Plato J.Proof analysis:a contribution to Hilbert’’s last problem. . 2011
  • 8Negri S.Proof analysis in non-classical logics. Logic Colloquium . 2005

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部