期刊文献+

改进的DBSCAN聚类算法在云任务调度中的应用 被引量:6

Application of Improved DBSCAN Clustering Algorithm in Task Scheduling of Cloud Computing
原文传递
导出
摘要 针对云计算环境中任务调度中存在的执行效率低的问题,提出了一种基于改进的基于密度的聚类算法(DBSCAN)的云任务调度策略.首先使用改进的基于密度的聚类算法DBSCAN对云任务进行聚类,然后与已经分类的资源进行匹配,解决资源与任务匹配程度低的问题.实验结果表明,对任务进行聚类后进行任务调度,任务在终端上的平均执行时间减少了大约35.2%,任务的调度时间也有了明显减少. Cloud scheduling strategy based on improved density-based spatial clustering of applications with noise( DBSCAN) clustering algorithm was proposed to solve the problem of low efficiency of task scheduling in the implementation of cloud computing environment. Firstly,an improved DBSCAN clustering algorithm was used to cluster tasks. Secondly,the classified tasks were matched with classified resources to solve the low matching degree in resources and tasks. Experiments showed that the average execution time of tasks on the terminal was reduced by about 35. 2% after clustering task,and the task scheduling time had also been significantly reduced.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2017年第S1期68-71,共4页 Journal of Beijing University of Posts and Telecommunications
基金 国家242信息安全计划项目(2015A136)
关键词 任务调度 基于密度的聚类算法 聚类 task scheduling cloud computing environ ment cluster
  • 相关文献

参考文献1

二级参考文献14

  • 1Ester M, Kriegel H P, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise // Proceedings of the 2nd International Conference on Knowledge Discovering in Databases and Data Mining (KDD-96). Massa- chusetts: AAAI Press, 1996:226-232.
  • 2Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases//Proceedings ACM SIGMOD International Conference on Management of Data (SIGMOD 1998). Washington, 1998:73-84.
  • 3Karypis G, Han E, Kumar V. CHAMELEON: a hierarchical clustering algorithm using dynamic modeling. IEEE Computer, 1999, 32(8): 68-75.
  • 4Ertoz L, Michael S, Kumar V. Finding clusters of different sizes, shapes, and densities in noisy, highdimensional data // Proceedings of the third SIAM International Conference on Data Mining (SIAM 2003). San Francisco, CA, 2003:47-58.
  • 5Merz C J, Merphy P. UCI repository of machine learning databases [DB/OL]. (2000)[2012-05-30]. http://www.ics.uci.edu/-mlearn/MLRepository, html.
  • 6Lewis D D. Reuters-21578 text categorization collection data set [DB/OL]. (1997)[2012-05-30]. http://archive.ics.uci.edu/ml/datasets/Reuters21578 + Text + Categorization + collection.
  • 7搜狐研发中心.搜狗文本分类语料库[DB/OL].(2006)[2012-05-30].http://www.sogou.com/labs/dl/C.html.
  • 8Jiang Shengyi, Xu Yuming. An efficient clustering algorithm // Procedings of 2004 International Con- ference on Machine Learning and Cybernetics. Shanghai, 2004:1513-1518.
  • 9Guha S,Rastogi R, Shim K. ROCK: a robust clustering algorithm for categorical attributes // Proceedings of the 15th ICDE. Sydney, 1999:512-521.
  • 10He Zengyou, Xu Xiaofei, Deng Shengchun. Squeezer an efficient algorithm for clustering categorical data Journal of Computer Science and Technology, 2002 17(5): 611-624.

共引文献9

同被引文献62

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部