期刊文献+

基于动态聚类混合拓扑结构粒子群算法的PDVRPTF 被引量:1

PDVRPTF Based on Dynamic Clustering Hybrid Topological Structure Particle Swarm Optimization
原文传递
导出
摘要 经典物流配送模型的目标、约束条件不够全面,在实际应用中存在一定缺陷,对此,构建了时间窗和油耗取送一体化的物流配送路径优化模型(PDVRPTF).设计了一种基于k-medoids动态聚类混合拓扑结构粒子群算法,解决了经典粒子群算法在求解此类模型时容易陷入局部最优解的问题.仿真结果表明,改进型粒子群算法能很好地跳出局部最优解,并快速收敛于全局最优解,且该算法可有效求解物流配送路径优化的问题. Aiming at the problem that the classic logistics distribution model considers the target,the constraints are not comprehensive enough and there are certain defects in the practical application,a integrated pickup and distribution vehicle routing problem on the basis of the classical model considering time window and fuel consumption(PDVRPTF)is constructed.Hybrid topological structure of particle swarm optimization based on k-medoids dynamic clustering is designed,which solves the problem that classical particle swarm optimization is easy to fall into local optimal solution when solving such models.The simulation results show that the improved particle swarm optimization can jump out of the local optimal solution quickly and converge to the global optimal solution quickly,which solve the logistics distribution path optimization problem effectively.
作者 杨福兴 胡智超 孔继利 YANG Fu-xing;HU Zhi-chao;KONG Ji-li(School of Automation,Beijing University of Posts and Telecommunications,Beijing 100876,China;School of Modern Post,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2019年第1期16-21,共6页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(71772010) 北京邮电大学青年科研创新计划专项-人才项目(2017RC26)
关键词 时间窗 取送一体化 油耗 动态聚类 混合拓扑结构 粒子群算法 time window integrated pickup and distribution fuel consumption dynamic clustering hybrid topological structure particle swarm optimization
  • 相关文献

参考文献2

二级参考文献17

  • 1刘向东,沙秋夫,刘勇奎,段晓东.基于粒子群优化算法的聚类分析[J].计算机工程,2006,32(6):201-202. 被引量:26
  • 2高鹰,谢胜利,许若宁,李朝晖.基于聚类的多子群粒子群优化算法[J].计算机应用研究,2006,23(4):40-41. 被引量:11
  • 3雷秀娟,史忠科,周亦鹏.PSO优化算法演变及其融合策略[J].计算机工程与应用,2007,43(7):90-92. 被引量:15
  • 4Kennedy J,Eberhart R.Partiele swarm optimization[C]//Proe of IEEE International Conference on Neural Network,Perth,Australia.Piscaraway NJ:IEEE Service Center, 1995:1942-1948.
  • 5Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C]//Proc of 6th International Symposium on Micro Machine and Human Science,Nagoya,Japan.Piscataway NJ:IEEE Service Center, 1995 : 39-43.
  • 6Kennedy J,Eberhart R.A discrete binary version of the particle swarm algorithm[C]//Proc of IEEE Conference on Systems,Man and Cybernetics, 1997:4104-4109.
  • 7Clerc M.The swarm and queen:Towards a deterministic and adaptive particle swarm optimization[C]//Proc IEEE Congress on Evolutionary Computation, 1999:1591-1597.
  • 8Ozcan E,Mohan C K.Particle swarm optimization:Surfing the waves[C]//Proc of Congress on Evolutionary Computation,1999: 1939-1944.
  • 9崔红梅,朱庆保.微粒群算法的参数选择及收敛性分析[J].计算机工程与应用,2007,43(23):89-91. 被引量:33
  • 10Clerc M, Kennedy J. The particle swarm: Explosion, stability, and convergence in a multi-dimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6( 1 ) : 58-73.

共引文献88

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部