期刊文献+

基于机器学习的MEC随机任务迁移算法 被引量:10

Machine Learning-Based Stochastic Task Offloading Algorithm in Mobile-Edge Computing
原文传递
导出
摘要 针对移动边缘计算(MEC),提出了一种基于机器学习的随机任务迁移算法,通过将任务划分为可迁移组件和不可迁移组件,结合改进的Q学习和深度学习算法生成随机任务最优迁移策略,以最小化移动设备能耗与时延的加权和.仿真结果表明,该算法的时延与能耗加权和与移动设备本地执行算法相比节约了38. 1%. For mobile-edge computing(MEC),a machine learning-based stochastic task offloading algorithm was proposed.By dividing the task into offloadable components and unoffloadable components,the improved Q learning and deep learning algorithm were used to generate the optimal offloading strategy of stochastic task,which minimized the weighted sum of energy consumption and time delay of the mobile devices.The simulation results show that the proposed algorithm saves the weighted sum of energy consumption and time delay by 38.1%,compared to the local execution algorithm.
作者 孟浩 霍如 郭倩影 黄韬 刘韵洁 MENG Hao;HUO Ru;GUO Qian-ying;HUANG Tao;LIU Yun-jie(Beijing Advanced Innovation Center for Future Internet Technology,Beijing University of Technology,Beijing100124,China;State Key Laboratory of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing100876,China)
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2019年第2期25-30,共6页 Journal of Beijing University of Posts and Telecommunications
基金 北京市科技新星计划项目(Z151100000315078) 国家科技重大专项项目(2018ZX03001019-003) 国家高技术研究发展计划(863计划)项目(2015AA015702)
关键词 移动边缘计算 随机任务迁移 机器学习 时延 移动设备能耗 mobile-edge computing stochastic task offloading machine learning delay mobile device’s energy consumption
  • 相关文献

参考文献1

二级参考文献14

  • 1殷国富,罗阳,龙红能,成尔京.并行设计子任务调度的遗传算法原理与实现方法[J].计算机辅助设计与图形学学报,2004,16(8):1122-1126. 被引量:25
  • 2冷晟,魏孝斌,王宁生.柔性工艺路线蚁群优化单元作业调度[J].机械科学与技术,2005,24(11):1268-1271. 被引量:5
  • 3陈圣磊,吴慧中,肖亮,朱耀琴.协同设计任务调度的多步Q学习算法[J].计算机辅助设计与图形学学报,2007,19(3):398-402. 被引量:11
  • 4Xie Rong,Rus D,Stein C. Scheduling multi-task agents[A].2001.260-276.
  • 5Deepa R,Srinivasan T,Miriam D D H. An efficient task scheduling technique in heterogeneoussystems using self-adaptive selection-based genetic algorithm[A].2006.343-348.
  • 6Loukopoulos T,Lampsas P,Sigalas P. Improved genetic algorithms and list scheduling techniques for independent task scheduling in distributed systems[A].2007.67-74.
  • 7Wei Yingzi,Zhao Mingyang. Composite rules selection using reinforcement learning for dynamic job-shop scheduling robotics[A].2004.1083-1088.
  • 8Shah K,Kumar M. Distributed independent reinforcement learning (DIPL) approach to resource management in wireless sensor networks[A].2007.1-9.
  • 9Liu Xiaoping,Shi Hui,Lu Qiang. Visual task-driven based on task precedence graph for collaborative design[A].2007.246-251.
  • 10Christopher J C H,Watkins,Peter D. Q-learning[J].Machine Learning,1992,(08):279-292.

共引文献2

同被引文献71

引证文献10

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部